• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
WANG Wen, XU Wu-cheng. Some issues on the characterization of chaotic properties of hydrologic time series[J]. Advances in Water Science, 2005, 16(4): 609-616.
Citation: WANG Wen, XU Wu-cheng. Some issues on the characterization of chaotic properties of hydrologic time series[J]. Advances in Water Science, 2005, 16(4): 609-616.

Some issues on the characterization of chaotic properties of hydrologic time series

More Information
  • Received Date: March 17, 2004
  • Revised Date: July 11, 2004
  • Whether hydrologic processes are low dimensional chaotic processes is still controversial.After analyzing the litera ture about the research of chaos,we find that there are many problems.For instance,the estimation of the time delay is very subjective and application dependent;in estimation of correlation dimension,many researchers ignore intentionally or carelessly a principle,i. e,there must be a clearly scaling region used for confirming the existence of finite correlation dimension; many researchers still use the original formula of G-P algorithm to calculate the correlation of hydrological time series instead of using the modified formula proposed by Theiler.Therefore,the temporally correlated points in the state space are probably mistaken for a spatial geometry in the state space,and the problem still commonly exits that the size of the studied series by researchers in China is too small.
  • [1]
    Wilcox B P, Seyfried M S, Matison T H. Searching for chaotic dynamics in snowmelt runoff[J]. Water Resour Res, 1991, 27 (6):1 005-1 010.
    [2]
    Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series[J]. J Hydrol, 1994, 153:23-52.
    [3]
    Porporato A, Ridolli L. Clues to the existence of deter-ministic chaos in river flow[J]. Int J Mod Phys B, 1996, 10(5): 1 821-1 862.
    [4]
    Pasternack G B. Does the river run wild? Assessing chaos in hydrological systems[J]. Advances in Water Resources, 1999, 23:253-260.
    [5]
    Sivakumar B, Berndtsson R, Olsson J, et al. Evidence of chaos in the rainfall-runoff process[J]. Hydrol Sci, 2001, 46(1):131-145.
    [6]
    Phoon K K, Islam M N, Liaw C Y, et al. Practical Inverse Approach for Forecasting Nonlinear Hydrological Time Series[J]. J Hydro Eng,2002, 7(2):116-128.
    [7]
    Elshorbagy A, Simonovic S P, Panu U S. Estimation of missing stream flow data using principles of chaos theory[J]. J Hydrol, 2002, 255:125-133.
    [8]
    Islam M N, Sivakumar B. Characterization and prediction of runo. dynamics: a nonlinear dynamical view[J]. Advances in Water Resources,2002, 25:179-190.
    [9]
    Lambrakis N, Andreou AS, Polydoropoulos P, et al. Nonlinear analysis and forecasting of a brackish karstic spring[J]. Water Resour Res,2000, 36(4): 875-884.
    [10]
    Bordignon S, Lisi F. Nonlinear analysis and prediction of river flow time series[J]. Environmetrics, 2000, 11:463-477.
    [11]
    Jayawardena AW, Li WK, Xu P. Neighborhood selection for local modeling and prediction of hydrological time series[J]. J Hydrol, 2002,258:40-57.
    [12]
    Sivakumar B, Persson M, Berndtsson R, et al. Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?[J]. Water Resour Res, 2002, 38(2):3-1-8.
    [13]
    王文均,叶敏,陈显维.长江径流时间序列混浊特性的定量分析[J].水科学进展,1994,5(2):87-93.
    [14]
    傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230.
    [15]
    丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究——Ⅱ相空间嵌入维数的确定[J].水科学进展,2003,14(4):412-416.
    [16]
    温权,张士军,张周胜.探求径流序列中的混沌特征[J].水电能源科学,1999,17(1):21-23.
    [17]
    陈仁升,康尔泗,杨建平,等.黑河出山径流的非线性特征分析[J].冰川冻土,2002,24(3):292-298.
    [18]
    Rodriguez-Iturbe I, Febres de Power B, Sharifi M B, et al. Georgakakos. Chaos in rainfall[J]. Water Resources Research, 1989, 25(7):1667-1 675.
    [19]
    Sivakumar B, Liong, S Y, Liaw C-Y, et al. Singapore rainfall behavior: chaotic?[J]. J Hydrol Eng, 1999, 4 (1):38-48.
    [20]
    王宝灵,谢金南,俞亚勋.西北地区降水混沌特性的初步分析[J].高原气象,2000,19(1):25-31.
    [21]
    陈云浩,史培军,李晓兵.不同热力背景对城市降雨(暴雨)的影响(1)一降雨时序的混饨分析[J].自然灾害学报,2001,10(3):20-25.
    [22]
    袁鹏,李谓新,王文圣,等.月降雨量时间序列中的混沌现象[J].四川大学学报(工程科学版),2002,34(1):16-19.
    [23]
    王德智,夏军,张利平.东北地区月降雨时间序列的混沌特性研究[J].水电能源科学,2002,20(3):32-34.
    [24]
    王文.黄河流量过程时间序列分析与建模[D].北京:中国科学院研究生院,2003.
    [25]
    丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究——Ⅰ相空间嵌入滞时的确定[J].水科学进展,2003,14(4):407-411
    [26]
    Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9:189-208.
    [27]
    Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package[J]. Chaos, 1999, 9:413-435.
    [28]
    Kantz H, Schreiber T. Nonlinear time series analysis[M]. Cambridge: Cambridge University Press, 1997.
    [29]
    严中伟.华北旱涝变化的混沌性质分析[J].气象学报,1995,53(2):232-237.
    [30]
    Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data[J]. Phys Rev A, 1986, 34(3):2427-2432.
    [31]
    Grassberger P. An optimized box-assisted algorithm for fractal dimensions[J]. Phys Lett A, 1990, 148:63-68.
    [32]
    Takens F. Detecting strange attractors in turbulence[J]. Lecture notes in mathematics, 1981, 898:366-381.
    [33]
    Farmer J D, Sidorowich J J. Predicting chaotic time series[J]. Phys Rev Lett, 1987, 59(8):845-848.
    [34]
    Sauer T, Yorke J. How many delay coordinates do you need?[J]. Int J Bifurcation Chaos, 1994, 3:737-744.
    [35]
    Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase-space reconstruction using geometrical construction[J].Phy Rev A, 1992, 45:3403-3411.
    [36]
    Liu Q, Islam S, Rodriguez-Iturbe I, et al. Phase-space analysis of daily streamflow: Characterization and prediction[J]. Adv Water Resour,1998, 21:463-475.
    [37]
    Procaccia I. Complex or just complicated?[J]. Nature, 1988, 333:498-499.
    [38]
    Nerenberg, M.A.H., Essex, C. Correlation dimension and systematic geometric effects[J]. Phys Rev A, 1990, 42 (12):7065-7074.
    [39]
    Tsonis A A, Elsner J B, Georgakakos K P. Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation[J]. J Atmos Sci, 1993, 50(15):2549-2555.
    [40]
    Abraham N B. et al. Calculating the Dimension of Attractors from Small Data[J]. Phys Lett A, 1986, 114:217-221.
    [41]
    Eckmann J P, Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems[J]. Physica D,1992, 56, 185-187.
    [42]
    Hong Shi-Zhong, Hong Shi-Ming. An Amendment to the Fundamental Limits on Dimension Calculations[J]. Fractals. 1994, 2 (1):123-125.
    [43]
    Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D, 1985, 16:285-317.
    [44]
    Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: the method of surrogate data[J]. Physica D, 1992, 58:77-94.
    [45]
    杨思全,陈亚宁.河冰湖突发洪水的分形和混沌特征研究[J].干旱区地理,1999,22(2):77-82.
    [46]
    Ghilardi P, Rosso R. Comment on chaos in rainfall[J]. Water Resour Res, 1990, 26 (8):1 837-1 839.
    [47]
    Koutsoyiannis D, Pachakis D. Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series[J]. J Geophys Res,1996, 101 (D21):26441-26451.
    [48]
    Schertzer D, Tchiguirinskaia I, Lovejoy S, et al. Which chaos in the rainfall-runoff process? A discussion on "Evidence of chaos in the rainfall-runoff process" by Sivakumar et al[J]. Hydrol Sci J., 2002, 47(1):139-147.

Catalog

    Article Metrics

    Article views (91) PDF downloads (708) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return