Citation: | WANG Wen, XU Wu-cheng. Some issues on the characterization of chaotic properties of hydrologic time series[J]. Advances in Water Science, 2005, 16(4): 609-616. |
[1] |
Wilcox B P, Seyfried M S, Matison T H. Searching for chaotic dynamics in snowmelt runoff[J]. Water Resour Res, 1991, 27 (6):1 005-1 010.
|
[2] |
Jayawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream flow time series[J]. J Hydrol, 1994, 153:23-52.
|
[3] |
Porporato A, Ridolli L. Clues to the existence of deter-ministic chaos in river flow[J]. Int J Mod Phys B, 1996, 10(5): 1 821-1 862.
|
[4] |
Pasternack G B. Does the river run wild? Assessing chaos in hydrological systems[J]. Advances in Water Resources, 1999, 23:253-260.
|
[5] |
Sivakumar B, Berndtsson R, Olsson J, et al. Evidence of chaos in the rainfall-runoff process[J]. Hydrol Sci, 2001, 46(1):131-145.
|
[6] |
Phoon K K, Islam M N, Liaw C Y, et al. Practical Inverse Approach for Forecasting Nonlinear Hydrological Time Series[J]. J Hydro Eng,2002, 7(2):116-128.
|
[7] |
Elshorbagy A, Simonovic S P, Panu U S. Estimation of missing stream flow data using principles of chaos theory[J]. J Hydrol, 2002, 255:125-133.
|
[8] |
Islam M N, Sivakumar B. Characterization and prediction of runo. dynamics: a nonlinear dynamical view[J]. Advances in Water Resources,2002, 25:179-190.
|
[9] |
Lambrakis N, Andreou AS, Polydoropoulos P, et al. Nonlinear analysis and forecasting of a brackish karstic spring[J]. Water Resour Res,2000, 36(4): 875-884.
|
[10] |
Bordignon S, Lisi F. Nonlinear analysis and prediction of river flow time series[J]. Environmetrics, 2000, 11:463-477.
|
[11] |
Jayawardena AW, Li WK, Xu P. Neighborhood selection for local modeling and prediction of hydrological time series[J]. J Hydrol, 2002,258:40-57.
|
[12] |
Sivakumar B, Persson M, Berndtsson R, et al. Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?[J]. Water Resour Res, 2002, 38(2):3-1-8.
|
[13] |
王文均,叶敏,陈显维.长江径流时间序列混浊特性的定量分析[J].水科学进展,1994,5(2):87-93.
|
[14] |
傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230.
|
[15] |
丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究——Ⅱ相空间嵌入维数的确定[J].水科学进展,2003,14(4):412-416.
|
[16] |
温权,张士军,张周胜.探求径流序列中的混沌特征[J].水电能源科学,1999,17(1):21-23.
|
[17] |
陈仁升,康尔泗,杨建平,等.黑河出山径流的非线性特征分析[J].冰川冻土,2002,24(3):292-298.
|
[18] |
Rodriguez-Iturbe I, Febres de Power B, Sharifi M B, et al. Georgakakos. Chaos in rainfall[J]. Water Resources Research, 1989, 25(7):1667-1 675.
|
[19] |
Sivakumar B, Liong, S Y, Liaw C-Y, et al. Singapore rainfall behavior: chaotic?[J]. J Hydrol Eng, 1999, 4 (1):38-48.
|
[20] |
王宝灵,谢金南,俞亚勋.西北地区降水混沌特性的初步分析[J].高原气象,2000,19(1):25-31.
|
[21] |
陈云浩,史培军,李晓兵.不同热力背景对城市降雨(暴雨)的影响(1)一降雨时序的混饨分析[J].自然灾害学报,2001,10(3):20-25.
|
[22] |
袁鹏,李谓新,王文圣,等.月降雨量时间序列中的混沌现象[J].四川大学学报(工程科学版),2002,34(1):16-19.
|
[23] |
王德智,夏军,张利平.东北地区月降雨时间序列的混沌特性研究[J].水电能源科学,2002,20(3):32-34.
|
[24] |
王文.黄河流量过程时间序列分析与建模[D].北京:中国科学院研究生院,2003.
|
[25] |
丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究——Ⅰ相空间嵌入滞时的确定[J].水科学进展,2003,14(4):407-411
|
[26] |
Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9:189-208.
|
[27] |
Hegger R, Kantz H, Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package[J]. Chaos, 1999, 9:413-435.
|
[28] |
Kantz H, Schreiber T. Nonlinear time series analysis[M]. Cambridge: Cambridge University Press, 1997.
|
[29] |
严中伟.华北旱涝变化的混沌性质分析[J].气象学报,1995,53(2):232-237.
|
[30] |
Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data[J]. Phys Rev A, 1986, 34(3):2427-2432.
|
[31] |
Grassberger P. An optimized box-assisted algorithm for fractal dimensions[J]. Phys Lett A, 1990, 148:63-68.
|
[32] |
Takens F. Detecting strange attractors in turbulence[J]. Lecture notes in mathematics, 1981, 898:366-381.
|
[33] |
Farmer J D, Sidorowich J J. Predicting chaotic time series[J]. Phys Rev Lett, 1987, 59(8):845-848.
|
[34] |
Sauer T, Yorke J. How many delay coordinates do you need?[J]. Int J Bifurcation Chaos, 1994, 3:737-744.
|
[35] |
Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase-space reconstruction using geometrical construction[J].Phy Rev A, 1992, 45:3403-3411.
|
[36] |
Liu Q, Islam S, Rodriguez-Iturbe I, et al. Phase-space analysis of daily streamflow: Characterization and prediction[J]. Adv Water Resour,1998, 21:463-475.
|
[37] |
Procaccia I. Complex or just complicated?[J]. Nature, 1988, 333:498-499.
|
[38] |
Nerenberg, M.A.H., Essex, C. Correlation dimension and systematic geometric effects[J]. Phys Rev A, 1990, 42 (12):7065-7074.
|
[39] |
Tsonis A A, Elsner J B, Georgakakos K P. Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation[J]. J Atmos Sci, 1993, 50(15):2549-2555.
|
[40] |
Abraham N B. et al. Calculating the Dimension of Attractors from Small Data[J]. Phys Lett A, 1986, 114:217-221.
|
[41] |
Eckmann J P, Ruelle D. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems[J]. Physica D,1992, 56, 185-187.
|
[42] |
Hong Shi-Zhong, Hong Shi-Ming. An Amendment to the Fundamental Limits on Dimension Calculations[J]. Fractals. 1994, 2 (1):123-125.
|
[43] |
Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D, 1985, 16:285-317.
|
[44] |
Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: the method of surrogate data[J]. Physica D, 1992, 58:77-94.
|
[45] |
杨思全,陈亚宁.河冰湖突发洪水的分形和混沌特征研究[J].干旱区地理,1999,22(2):77-82.
|
[46] |
Ghilardi P, Rosso R. Comment on chaos in rainfall[J]. Water Resour Res, 1990, 26 (8):1 837-1 839.
|
[47] |
Koutsoyiannis D, Pachakis D. Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series[J]. J Geophys Res,1996, 101 (D21):26441-26451.
|
[48] |
Schertzer D, Tchiguirinskaia I, Lovejoy S, et al. Which chaos in the rainfall-runoff process? A discussion on "Evidence of chaos in the rainfall-runoff process" by Sivakumar et al[J]. Hydrol Sci J., 2002, 47(1):139-147.
|