• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
YAO Guan-rong, GAO Quan-zhou. Correlation between riverine carbon transport and terrestrial erosion-deposition processes[J]. Advances in Water Science, 2007, 18(1): 133-139.
Citation: YAO Guan-rong, GAO Quan-zhou. Correlation between riverine carbon transport and terrestrial erosion-deposition processes[J]. Advances in Water Science, 2007, 18(1): 133-139.

Correlation between riverine carbon transport and terrestrial erosion-deposition processes

Funds: The study is financially supported by the National Natural Science Foundation of China(No.40471120),the Specialized Research Fund for the Doctoral Program of Higher Education(No.20040558025).
More Information
  • Received Date: January 18, 2005
  • Revised Date: October 12, 2005
  • The riverine carbon transport is closely related to the processes of terrestrial erosion-deposition.This paper firstly reviews two different kinds of terrestrial erosion(the mechanical and chemical weathering mechanisms),discusses their respective roles in providing carbon to the river,and compares the differences between the monsoon and non-monsoon drainage basins in flux and the characteristic of the riverine carbon transport.Then it makes a summary of the terrestrial carbon deposition and points out several potential land-origin carbon traces including dam capture,deposition happening in floodplain,estuary and near-shore area,and terrestrial carbon precipitation.It is necessary to pay more attention to the terrestrial carbon deposition, and set up clear mechanisms of different types of carbon deposition and their respective contributions to world terrestrial carbon sink,because the captive effect of terrestrial environment relative to the terrestrial erosion is unclear.In addition,we should further explore direct or indirect impacts of human activities on the processes of terrestrial erosion-deposition and the riverine carbon cycle.
  • [1]
    UNEP.Desertification-Land Degradation in Arid,semi-Arid,and Dry SubHumid Areas[J].Our Planet,1994,6(5):4-5.
    [2]
    UNEP.Global Biodiversity Assessment[M].Cambridge:Cambridge University Press,1996.
    [3]
    高全洲,陶贞.河流有机碳的输出通量及性质研究进展[J].应用生态学报,2003,14(6):1 000-1 002.
    [4]
    周广胜.全球碳循环[M].北京:气象出版社,2003.
    [5]
    Ludwig W,Probst J L,Kempe S.Predicting the oceanic input of organic carbon by continental erosion[J].Global Biogeochem Cycle,1996,10(1):23-41.
    [6]
    Richey J E,Melack J M,Aufdenkampe A K,et al.Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2[J].Nature,2002,416:617-620.
    [7]
    Cole J J,Caraco N F.Carbon in catchments:connecting terrestrial carbon losses with aquatic metabolism[J].Mar Freshwater Res,2002,52:101-110.
    [8]
    Gibbs R J.The geochemistry of the Amazon River system:Part Ⅰ The factors that control the salinity and thecomposition and concentration of the suspended solids[J].Geol Soc.America Bull,1976,78:1 203-1 232.
    [9]
    Meade R H,Dunne T,Richey J E.Storage and remobilization of suspended sediment in the lower Amazon River of Brazil[J].Science,1985,228:488-490.
    [10]
    Lal R.Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effects[J].Progress in Environmental Science,1999,1(4):307-326.
    [11]
    Milliman J D,Syvitski J P M.Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers[J].Geol,1992,100:525-544.
    [12]
    Ittekkot V,Safiullah S,Mycke B,et al.Seasonal variability and geochemical significance of organic matter in the River Ganges,Bangladesh[J].Nature,1985,317:800-802.
    [13]
    Veyssy E,Etcheber H,Lin R G,et al.Seasonal variation and origin of Particulate Organic Carbon in the lower Garonne River at La Reole (southwestern France)[J].Hydrobiologia,1999,391:113-126.
    [14]
    陈骏,杨杰东,李春雷.大陆风化与全球气候变化[J].地球科学进展,2002,16(3):399-405.
    [15]
    Amiotte S P,Probst J L.Flux de CO2 atmosphérique consommé par érosion chimique des continents et transfert de carbone du réservoir biosphère-sol vers les océans[A].In:14e Réun Sci,Soc Géol[C].Paris,France,Terre,Toulouse,1992,5.
    [16]
    Amiotte S P,Probst J L.Modelling of atmospheric CO2 consumption by chemical weathering of rocks:Application to the Garonne,Congo and Amazon basins[J].Chemical Geology,1993,107:205-210.
    [17]
    Probst J L,Amiotte S P,Tardy Y.Global continental erosion and fluctuations of atmospheric CO2 consumed during the last 100 years[A].Kharaka Y K,Maest A,eds.Proc 7th Int Symp W R I[C].Park City,Utah,USA,Balkema,Rotterdam,1992,483-486.
    [18]
    高全洲,沈承德,孙彦敏,等.珠江流域的化学侵蚀[J].地球化学,2001,30(3):223-230.
    [19]
    Meade R H,Stevens H H.Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers-with emphasis on the Mississippi River[J].Sci Tot Environ,1990,97/98:125-135.
    [20]
    Meybeck M.Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans[J].Rev Geol Dyn Geogr phys,1979,21:215-246.
    [21]
    Schlesinger W H.Evidence from chronosequence studies for a low carbon-storage potential of soils[J].Nature,1990,348:232-234.
    [22]
    Stallard R F.Terrestrial sedimentation and the carbon cycle:Coupling weathering and erosion to carbon burial[J].Global Biogeochemical Cycles,1998,12(2):231-257.
    [23]
    Trimble S W.The fallacy of stream equilibrium in contemporary denudation studies[J].Science,1977,277:876-887.
    [24]
    Trimble S W.A sediment budget for Coon Creek basin in the Driftless area,Wisconsin,1853-1977[J].Science,1983,283:454-474.
    [25]
    Keil R G,Mayer L M,et al.Losses of organic matter from riverine particles in deltas[J].Geochimica et Cosmochimica Acta,1997,61:1 507-1 511.
    [26]
    Opsahl S,Benner R.Distribution and cycling of terrigenous dissolved organic matter in the ocean[J].Nature,1997,386(6624):480-482.
    [27]
    World Commission on Dams.Dams and Development:A New Framework for Decision-Making[M].London:Earthscan,2000.
    [28]
    Vorosmarty C J,Meybeck M,Balázs F,et al.Anthropogenic sediment retention:major global impact from registered river impoundments[J].Global and Planetary Change,2003,39:169-190.
    [29]
    Tans P P,Fung I Y,Takahashi T.Observational constraints on the global atmospheric CO2 budget[J].Science,1990,247:1 431-1 438.
    [30]
    Francey R T,Tans P P,Allison C E.Changes in oceanic and terrestrial carbon uptake since 1982[J].Nature,1995,373:326-330.
    [31]
    Ciais P,Tans P P,White J W C,et al.Partitioning of ocean and land up take of CO2 as inferred by δ13 C measurements from the NOAA Climate Monitoring and Diagnostics laboratory global air sampling network[J].J Geophys Res,1995,100:5 051-5 070.
    [32]
    Schlesinger W H.Changes in soil carbon storage and associated properties with disturbance and recovery[A].In:Tuabalka J R,Reichle D E,eds.The Changing Carbon Cycle:A Global Analysis:Proceedings of the Sixth Annual Oak Ridge National Laboratories Life Sciences Symposium[C].New York:Springer-Verlag,1986,194-220.
    [33]
    Post W M,Mann L M.Changes in soil organic carbon and nitrogen as a result of cultivation[A].In:Bowman A F,ed.Soils and the Greenhouse Effect:Proceedings of the International Conference on Soils and the Greenhouse Effect[C].New York:John Wiley & Sons,1990,401-407.
    [34]
    Matthews E.Global vegetation and land use:New high-resolution databases for climate studies[J].J Clim Appl Meteorol,1983,22:474-487.
    [35]
    Hooke R L.On the efficiency of humans as geomorphic agents[J].GSA Today,1994,4(9):218-225.
    [36]
    Kao S J,Liu K K.Particulate organic carbon export from a subtropical mountainous river (Lan yang Hsi) in Taiwan[J].Limnol Oceanogr,1996,41:1 749-1 757.
    [37]
    吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学,2003,5(19):65-77.
    [38]
    高全洲,沈承德.河流碳通量与陆地侵蚀研究[J].地球科学进展,1998,13(4):369-375.

Catalog

    Article Metrics

    Article views (198) PDF downloads (561) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return