• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
JIANG Ying-kui, LIU Cong-qiang, TAO Fa-xiang. Sulfur isotope composition characters of Wujiang river water in Guizhou province[J]. Advances in Water Science, 2007, 18(4): 558-565.
Citation: JIANG Ying-kui, LIU Cong-qiang, TAO Fa-xiang. Sulfur isotope composition characters of Wujiang river water in Guizhou province[J]. Advances in Water Science, 2007, 18(4): 558-565.

Sulfur isotope composition characters of Wujiang river water in Guizhou province

Funds: The study is financially supported by the National Key Project for Basic Research and Development Program of China (No.2006CB403200) andthe National Natural Science Foundation of China (No.40372108)
More Information
  • Received Date: June 28, 2006
  • Revised Date: July 29, 2006
  • The sulfur isotopic (δ34S-SO42-) composition of the water in Wujiang river and its catchment area was measured during high-flow period.The average SO42- concentration is 0.48 mmol/L.The river water δ34S values range from -11.5‰ to 8.3‰,whereas the δ34S values of mainstream show only a narrow range and exhibit negative values from -6.7‰ to -3.9‰.The isotopic composition of surface water allows distinguishing the contribution due to the weathering rock and atmospheric precipitation,and the spatial variation in δ34S over the catchment area is obvious.The average SO42- concentration is higher in the upper part of the river than in the lower regions,while the average δ34S value is lower.The upper river shows a three end 2 member mixing between rainwater SO42-,SO42- from oxidation of pyrite in coal and the sulfide deposits.In the lower reaches,the samples lie mainly on the isotopic mixing trend between the evaporitic SO42- and rainwater SO42-,the contribution of SO42- from oxidation of pyrite is less.The SO42- export flux of Wujiang river is 172×1010 g/a,of which the high-flow period export flux accounts for 80%.the relative contributions from the oxidation of pyrite in coal,the oxidation of sulfides deposits,the rainwater SO42- and the evaporitic SO42- are 50%,25%,20% and 5%,respectively.The erosion rate of carbonate by sulfuric acid is 35.1 t/km2/a (17.5 mm/ka) and the consumption rate reducing CO2 is 3.66×105 mol/km2/a approximately.
  • [1]
    万国江.碳酸盐岩与环境(卷一)[M].北京:地震出版社,1995.1-90.
    [2]
    Driscoll C T,Driscoll K M,Mitchell M J,et al.Effects of acidic deposition on forest and aquatic ecosystems in New York State[J].Environmental Pollution,2003,123:327-336.
    [3]
    Prietzel J,Mayer B,Legge A H.Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada)[J].Environmental Pollution,2004,132:129-144.
    [4]
    Novák M,Kirchner J W,Groscheová H,et al.Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx[J].Geochimica et Cosmochimica Acta,2000,64:367-383.
    [5]
    Alewell C,Mitchell M J,Likens G E,et al.Sources of stream sulfate at the Hubbard brook Experimental Forest:long-term analyses using stable isotopes[J].Biogeochemistry,1999,44:281-299.
    [6]
    Jurjovec J,Ptacek C J,Blowes D W.Acid neutralization mechanisms and metal release in mine tailings:a laboratory column experiment[J].Geochimica et Cosmochimica Acta,2002,66:1 511-1 523.
    [7]
    Spence J,Telmer K.The role of sulfur in chemical weathering and atmospheric CO2 fluxes:evidence from major ions,δ13CDIC,and δ34SSO4 in rivers of the Canadian Cordillera[J].Geochimica et Cosmochimica Acta,2005,69:5 441-5 458.
    [8]
    Yanagisawa F,Sakai H.Thermal decomposition of barium sulfate-vanadium pentaoxide-sillica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements[J].Analytical Chemistry,1983,55:985-987.
    [9]
    Gaillardet J,Duprè B,Louvat P,et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J].Chemical Geology,1999,159:3-30.
    [10]
    洪业汤,顾爱良,王宏卫,等.黄河硫同位素组成与青藏高原隆起[J].第四纪研究,1995,20(1):360-366.
    [11]
    Han G L,Liu C Q.Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terain,Guizhou Province,China[J].Chemical Geology,2004,204:1-21.
    [12]
    储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97.
    [13]
    Hitchon B,Krouse H R.Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin,Canada-Ⅲ.Stable isotopes of oxygen,carbon and sulphur[J].Geochimica et Cosmochimica Acta,1972,36:1 337-1 357.
    [14]
    Longinelli A,Edmond J M.Isotope Geochemistry of the Amazon basin:a reconnaissance[J].Journal of Geophysical Research,1983,88:3 703-3 717.
    [15]
    郎赟超,刘丛强,赵志琦,等.贵阳市地表地下水化学组成:喀斯特水文系统水-岩反应及污染特征[J].水科学进展,2005,16(6):826-832.
    [16]
    Stallard R F,Edmond J M.Geochemistry of the Amazon.I-precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge[J].Journal of Geophysical Research,1981,86:9 844-9 858.
    [17]
    Nègrel P,Allégre C J,Duprè B,et al.Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water:the Congo Basin Case[J].Earth and Planetary Science Letters,1993,120.
    [18]
    洪业汤,张鸿斌,朱咏煊,等.中国大气降水的硫同位素组成特征[J].自然科学进展-国家重点实验室通讯,1994,4(6):741-745.
    [19]
    Xiao H Y,Liu C Q.Sources of nitrogen and sulfur in wet deposition at Guiyang,Southwest China[J].Atmospheric Environment,2002,36:5 121-5 130.
    [20]
    Han G L,Liu C Q.Strontium isotope and major ion chemistry of the rainwaters from Guiyang,Guizhou Province,China[J].Science of the Total Environment,2006,364(1-3):165-174.
    [21]
    Ivanov M V,Grinenko V A.The Global Biogeochemical Sulphur Cycle[M].Chichester:John Wiley & Sons,1983.1-470.
    [22]
    洪业汤,张鸿斌,朱咏煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素的分馏[J].中国科学B,1992(8):868-873.
    [23]
    倪建宇,洪业汤.贵州晚二叠世煤中硫同位素的组成特征[J].地质地球化学,1999,27(2):63-69.
    [24]
    吴攀.碳酸盐岩地区矿山环境地球化学研究[D].贵阳:中国科学院地球化学研究所,2002.
    [25]
    Zhang G P,Liu C Q,Yang Y G,et al.Characterization of heavy metals and sulphur isotope in water and sediments of a mine-tailing area rich in carbonate[J].Water Air and Soil Pollution,2004,155:51-62.
    [26]
    夏学惠.贵州三岔河硫铁矿矿床中假象黄铁矿的发现及其成因意义[J].化工地质,1994,16(1):22-28.
    [27]
    Krouse H R,Grinenko V A.Stable isotopes:natural and anthropogenic sulphur in the environment[M].Chichester:John Wiley & Sons,1991,1-440.
    [28]
    刘平.我国主要汞矿床的辰砂硫同位素组成[J].矿床地质,1992,11(3):213-219.
    [29]
    韩至钧,金占省.贵州省水文地质志[M].北京:地震出版社,1996.1-508.
    [30]
    张明波,张新田,余开金.乌江流域水文气象特征分析[J].水文,1999(6):53-56.
    [31]
    蒋颖魁,刘丛强,陶发祥.贵州乌江水系枯水期河水硫同位素组成研究[J].地球化学,2006,35(6):623-628.

Catalog

    Article Metrics

    Article views (276) PDF downloads (697) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return