Citation: | YU Guo-rong, XIA Zi-qiang. Prediction model of chaotic time series based on support vector machine and its application to runoff[J]. Advances in Water Science, 2008, 19(1): 116-122. |
[1] |
王红瑞,宋宇,刘昌明,等.混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407.
|
[2] |
Sivakumar B.Chaos theory in geophysics:past,present and future[J].Chaos,SolitonsandFractals,2004,19:441-462.
|
[3] |
赵永龙.水文动力系统混沌分析及其非线性预测[D].成都:四川联合大学,1997.
|
[4] |
王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-93.
|
[5] |
Taken S F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics,1981,898:366-381.
|
[6] |
ASCE Task Committee.Artificial neural networks in hydrology-Ⅰ:Preliminary concepts[J].Journal of Hydrologic Engineering,2000,5(2):115-123.
|
[7] |
ASCE Task Committee.Artificial neural networks in hydrology-Ⅱ:Hydrological applications[J].Journal of Hydrologic Engineering,2000,5(2):124-137.
|
[8] |
Vladimir N Vapnik 著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
|
[9] |
林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686.
|
[10] |
Liong S Y,Sivapragasm C.Flood stage forecasting with SVM[J].Journal of the American Water Resources Association,2002,38(1):173-186.
|
[11] |
廖杰,王文圣,李跃清,等.支持向量机及其在径流预测中的应用[J].四川大学学报(工程科学版),2006,38(6):24-29.
|
[12] |
李国庆,陈守煜.基于模糊模式识别的支持向量机的回归预测方法[J].水科学进展,2005,16(5):741-746.
|
[13] |
Packabd N H,CrutchfieiD J P,Farmer J D,et al.Geometry from a time series[J].Physics Review Letters,1980,45:712-716.
|
[14] |
GRA SSB ER GER P,PROCACCIA I Measuring the strangeness of strange attractors[J].Physica D,1983,9:189-208.
|
[15] |
Vapnik V.Statistical Learning Theory[M].New York:Springer,1998.
|
[16] |
Smola A J,Schoelkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.
|
[17] |
Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1999.
|
[18] |
Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[R].Technical report,Department of Computer Science and Information Engineering,National Taiwan University,2003.
|
[19] |
Dong B,Cao C,Lee S E.Applying support vector machines to predict building energy consumption in tropical region[J].Energy and Buildings,2005,37:545-553.
|
[20] |
Chen P W,Wang J Y,Lee H W.Model selection of SVMs using GA approach[A].2004 IEEE International Joint Conference[C].Budapest:2004.2 035-2 040.
|
[21] |
Yu X Y,Liong S Y,Babovic V.EC-SVM approach for real-time hydrologic forecasting[J].Journal of Hydroinformatics,2004,6(3):209-233.
|
[22] |
Pai P F,Hong W C.Support vector machines with simulated annealing algorithms in electricity load forecasting[J].Energy Conversion and Management,2005,46(17):2669-2688.
|
[23] |
Duan QY,Sorooshian S,Gupta V K.Optimal use of the SCE-UA global optimization method for calibrating watershed models[J].Journal of Hydrology,1994,158(1):265-284.
|
[24] |
Duan QY,Sorooshiaa S,Gupta V K.Optimal use of the SCE-UA global optimization method for calibrating watershed models[J].Journal of Hydrology,1994,158(1):265-284.
|
[25] |
Sorooshiaa S,Duan Q,Gupta V K.Calibration of rainfall-runoff models:application of global optimization to the Sacramento soil moisture accounting mode[J].Water Resources Research,1993,29(4):1 185-1 194.
|
[26] |
Kuczera G.Efficient subspace probabilistic parameter optimization for catchment models[J].Water Resources Research,1997,33(1):177-185.
|
[27] |
卢宇,陈宇红,贺国光.应用改进型小数据量法计算交通流量的最大Lypunov指数[J].系统工程理论与实践,2007(1):85-90.
|