• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
CHEN Ying-ying, SHI Jian-cheng, DU Jin-yang, JIANG Ling-mei. Numerical experiments of surface energy balance over China area based on GLDAS[J]. Advances in Water Science, 2009, 20(1): 25-31.
Citation: CHEN Ying-ying, SHI Jian-cheng, DU Jin-yang, JIANG Ling-mei. Numerical experiments of surface energy balance over China area based on GLDAS[J]. Advances in Water Science, 2009, 20(1): 25-31.

Numerical experiments of surface energy balance over China area based on GLDAS

Funds: The study is financially supported by the National Natural Science Foundation of China (No.90302008)
More Information
  • Received Date: January 13, 2008
  • In the absence of the long-term observations of the components of the water and land surface energy budgets,modeling can provide consistent fields of the land surface fluxes and states.We simulate the components of surface energy balance (SEB) equation using the land information system (LIS) of the global land data assimilation scheme (GLDAS) during the period of Novenben 2002 to Decenbero 2003 in China.The residual analyses of SEB indicate that the residuals distribution (RD) shows some spatial and temporal characteristics.The temporal characteristics of the RD suggest that LIS can simulate energy flux better in spring and summer than in other time.The spatial characteristics of the RD indicate that LIS can simulate energy flux better in places with relatively low latitude or low altitude than in the places with either the relatively higher latitude or higher altitude.This kind of the temporal and special distribution pattern is probablv related to the parameterization of snow albedo.The results of the comparison between simulated DLDAS and MODIS land surface temperature (LST) indicate that the main difference between two LST are within ±5 K.The scatter plots and standard deviation suggest that the simulated LST of night is 2-3 K more accurate than that of day time.
  • [1]
    HOUSER P R,MICHAEL B,BRIAN C,et al.A global land data assimilation scheme (GLDAS)[R].NRA-99-OES-04:NASA-ESE Modeling and Data Analysis Research,EOS/IDS,2000.
    [2]
    RODELL M,HOUSER P R,JAMBOR U,et al.The global land data assimilation system[J].Bulletin of the American Meteorological Society,2004,85(3):381-394.
    [3]
    MITCHELL K E,LOHMANN D,HOUSER P R,et al.Themulti-institution north american land data assimilation system (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J].Journal of Geophysical Research,2004:109D07S90.
    [4]
    van den H B.ELDAS Final Report[R].KNM I:ECMW F,2005.
    [5]
    YANG K,WATANABE T,KOIKE T,et al.Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget[J].Journal of the Meteorological Society of Japan,2007,85A:229-242.
    [6]
    李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻[J].自然科学进展,2007,17(2):163-173.(LI Xin,HUANG Chun-lin,CHE Tao,et al.Development of a Chinese land data assimilation system:its progress and prospects[J].Progress in Natural Science,2007,17(2):881-892.(in Chinese))
    [7]
    CHEN T H,HENDERSON S A,MILLY P,et al.Cabauw experimental results from the project for intercomparison of land surface parameterization scheme[J].Journal of Climate,1997,10:1194-1215.
    [8]
    KOREN V,SCHAAKE J,MITCHELL K,et al.A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J].J Geophys Res,1999,104(19):569-585.
    [9]
    HANSEN M C,DEFRIES R S,TOWNSHEND J R G,et al.Global land cover classification at 1km spatial resolution using a classification tree approach[J].Int J Remote Sens,2000,21:1331-1364.
    [10]
    GUTMAN G,IGNATOV A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].Int J Remote Sens,1998,19(8):1533-1543.
    [11]
    REYNOLDS C A,JACKSON T J,RAWLS W J.Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions[J].Water Resour Res,2000,36:3653-3662.
    [12]
    PFAENDTNER J,BLOOM S,LAMICH D,et al.Documentation of the Goddard Earth Observing System (GEOS) data assimilation system-version 1[M].NASA Tech Memo,1995:104606.
    [13]
    DERBER J C,PARRISH D F,LORD S J.The new global operational analysis system at the National Meteorological Center[J].Wea Forecasting,1991,6:538-547.
    [14]
    ROBINSON D A,KUKLA G.Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere[J].J Clim Appl Meteorol,1985,24:402-411.
  • Cited by

    Periodical cited type(12)

    1. 邓超,孙培源,尹鑫,邹佳成,王卫光. 基于概念性水文模型与长短时记忆模型耦合的汉江上游流域径流模拟. 湖泊科学. 2025(01): 279-292 .
    2. 曹彪,刘敏杰,余其鹰,张廷,马强. 基于PSO-TCN深度学习模型的新疆台兰河流域洪水预报研究. 中国防汛抗旱. 2025(02): 74-80 .
    3. 袁赛瑜,陈逸鸿,罗霄,张汇明,唐洪武. 知识数据双驱动的感潮河网水动力智能模拟方法. 水科学进展. 2025(01): 28-38 . 本站查看
    4. 高玉芳,何川,彭涛,高勇. 降水空间信息的处理策略对径流预测的影响. 水科学进展. 2025(01): 143-154 . 本站查看
    5. 黄靖涵,王兆才,吴俊豪,姚之远. 基于深度学习集合优化模型的径流区间预测研究. 水利学报. 2025(02): 240-252+265 .
    6. 陈泽鑫,赵铜铁钢. 基于可微参数学习的积融雪新安江模型. 水科学进展. 2025(02): 204-216 . 本站查看
    7. 赵铜铁钢,张弛,田雨,李昱,陈泽鑫,陈晓宏. 全球气象预报驱动流域水文预报研究进展与展望. 水科学进展. 2024(01): 156-166 . 本站查看
    8. 刘成帅,解添宁,李文忠,胡彩虹,徐源浩,牛超杰,余其鹰. 考虑径流过程矢量化的机器学习洪水预报模型. 水科学进展. 2024(03): 420-429 . 本站查看
    9. 李成业,彭杨,罗诗琦,于显亮,姚礼双. 基于深度学习的河道非恒定流糙率反演方法. 水力发电学报. 2024(10): 42-52 .
    10. 冯准,甘新,梁艳. 电信息技术在无线定位系统中的应用研究. 信息记录材料. 2024(11): 39-41+44 .
    11. 李巧玲,刘兴文,李致家,黎洪德. 多源多层土壤湿度实时同化及在实时洪水预报中的应用. 水科学进展. 2024(05): 773-783 . 本站查看
    12. 徐雨妮,许银山,仇红亚,冯志州,惠宇. 鄂东北诸河来水对汉口站水位顶托量化研究. 人民长江. 2024(12): 39-45 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (407) PDF downloads (684) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return