Citation: | GAO Hongkai, LIU Jintao, ZHANG Ke, SHAO Wei, XIA Jun. Re-discussion on the physical meaning of the tension water storage capacity in the Xin'anjiang model: from soil physical hydrology to ecosystem hydrology[J]. Advances in Water Science, 2025, 36(2): 177-189. DOI: 10.14042/j.cnki.32.1309.2025.02.001 |
The Xin'anjiang model has been widely applied in watershed rainfall-runoff simulation and hydrological forecasting, with significant international influence. In the model, the soil tension water storage capacity is the core parameter for runoff generation calculation, theoretically defined as the water retained by the soil between field capacity and wilting point. However, both hydrological research and practical applications have demonstrated that this theoretical physical interpretation is not strictly accurate. With the recent availability of massive global hydrological datasets and the deepening understanding of multi-scale hydrological mechanisms—especially advances in eco-hydrology—it is now possible to refine the concept and physical explanation of tension water storage capacity.Through theoretical analysis and validation with independent data sources, this study argues that soil tension water storage capacity should be redefined as the root zone storage capacity of terrestrial ecosystems. Clarifying this concept is of great theoretical significance for hydrology and provides a foundation for methodological innovations in determining this core parameter. Traditionally, root zone storage capacity is determined through parameter calibration based on watershed rainfall-runoff data, which is severely constrained in data-scarce regions. This study proposes a novel approach to infer ecosystem root zone storage capacity through surface fluxes: at the landscape scale, it can be retrieved from terrestrial ecosystem flux observations, while at larger scales—even globally—it can be accurately calculated using atmospheric-land surface reanalysis datasets or remotely sensed evaporation data.
Numerous studies have shown that the root zone storage capacity obtained through this new approach significantly enhances the accuracy of watershed runoff simulations, with particularly notable improvements in ungauged basins regions. The shift in perspective from soil physical hydrology to ecosystem hydrology helps clarify the fundamental runoff generation mechanisms in watersheds and reveals the physical meaning of empirical parameters in conceptual hydrological models, thereby advancing the theoretical development of watershed hydrological simulations.
[1] |
LIANG X,LETTENMAIER D P,WOOD E F,et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research:Atmospheres,1994,99(D7):14415-14428. doi: 10.1029/94JD00483
|
[2] |
刘金涛,宋慧卿,张行南,等. 新安江模型理论研究的进展与探讨[J]. 水文,2014,34(1):1-6. (LIU J T,SONG H Q,ZHANG X N,et al. A discussion on advances in theories of Xin'anjiang model[J]. Journal of China Hydrology,2014,34(1):1-6. (in Chinese) doi: 10.3969/j.issn.1000-0852.2014.01.001
LIU J T, SONG H Q, ZHANG X N, et al. A discussion on advances in theories of Xin'anjiang model[J]. Journal of China Hydrology, 2014, 34(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-0852.2014.01.001
|
[3] |
MCDONNELL J J,BEVEN K,MORGENSTERN U,et al. The first catchment water balance:new insights into Pierre Perrault,his perceptual model and his peculiar catchment[J]. Hydrological Sciences Journal,2025,70(1):27-36. doi: 10.1080/02626667.2024.2427890
|
[4] |
MANABE S. Climate and the ocean circulation:I:the atmospheric circulation and the hydrology of the earth's surface[J]. Monthly Weather Review,1969,97(11):739-774. doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2
|
[5] |
BEVEN K J. Rainfall-runoff modeling:the primer[M]. Hoboken:John Wiley & Sons,2012.
|
[6] |
赵人俊,庄一鴒. 降雨径流关系的区域规律[J]. 华东水利学院学报(水文分册),1963(S2):53-68. (ZHAO R J,ZHUANG Y L. Regional pattern of rainfall—runoff relationship[J]. Journal of East China Technical University of Water Resources (Hydrology Fascicle),1963(S2):53-68. (in Chinese)
ZHAO R J, ZHUANG Y L. Regional pattern of rainfall—runoff relationship[J]. Journal of East China Technical University of Water Resources (Hydrology Fascicle), 1963(S2): 53-68. (in Chinese)
|
[7] |
HEWLETT J D,HIBBERT A R. Moisture and energy conditions within a sloping soil mass during drainage[J]. Journal of Geophysical Research,1963,68(4):1081-1087. doi: 10.1029/JZ068i004p01081
|
[8] |
赵人俊. 流域水文模型:新安江模型与陕北模型[M]. 北京:水利电力出版社,1984. (ZHAO R J. Hydrological model:Xin'anjiang model and Shanbei model[M]. Beijing:China Water & Power Press,1984. (in Chinese)
ZHAO R J. Hydrological model: Xin'anjiang model and Shanbei model[M]. Beijing: China Water & Power Press, 1984. (in Chinese)
|
[9] |
DUNNE T,BLACK R D. Partial area contributions to storm runoff in a small new england watershed[J]. Water Resources Research,1970,6(5):1296-1311. doi: 10.1029/WR006i005p01296
|
[10] |
BEVEN K J,KIRKBY M J. A physically based,variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin,1979,24(1):43-69. doi: 10.1080/02626667909491834
|
[11] |
PERRIN C,MICHEL C,ANDRÉASSIAN V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments[J]. Journal of Hydrology,2001,242(3/4):275-301.
|
[12] |
BERGSTRÖM S. Development and application conceptual runoff model for scandinavian catchments[R]. Norrköping,Sweden:SMHI,1976.
|
[13] |
刘金涛,韩小乐,刘建立,等. 山坡表层关键带结构与水文连通性研究进展[J]. 水科学进展,2019,30(1):112-122. (LIU J T,HAN X L,LIU J L,et al. Understanding of critical zone structures and hydrological connectivity:a review[J]. Advances in Water Science,2019,30(1):112-122. (in Chinese)
LIU J T, HAN X L, LIU J L, et al. Understanding of critical zone structures and hydrological connectivity: a review[J]. Advances in Water Science, 2019, 30(1): 112-122. (in Chinese)
|
[14] |
ZHAO R J. The Xin'anjiang model applied in China[J]. Journal of Hydrology,1992,135(1/2/3/4):371-381.
|
[15] |
TIAN J,PAN Z K,GUO S L,et al. Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation[J]. Hydrology and Earth System Sciences,2022,26(19):4853-4874. doi: 10.5194/hess-26-4853-2022
|
[16] |
BEVEN K,FREER J. A dynamic TOPMODEL[J]. Hydrological Processes,2001,15(10):1993-2011. doi: 10.1002/hyp.252
|
[17] |
BEVEN K J,KIRKBY M J,FREER J E,et al. A history of TOPMODEL[J]. Hydrology and Earth System Sciences,2021,25(2):527-549. doi: 10.5194/hess-25-527-2021
|
[18] |
FENICIA F,SAVENIJE H H G,AVDEEVA Y. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate,land-use,or land-use management?[J]. Hydrology and Earth System Sciences,2009,13(9):1727-1737. doi: 10.5194/hess-13-1727-2009
|
[19] |
GAO H,HRACHOWITZ M,SCHYMANSKI S J,et al. Climate controls how ecosystems size the root zone storage capacity at catchment scale[J]. Geophysical Research Letters,2014,41(22):7916-7923. doi: 10.1002/2014GL061668
|
[20] |
GAO H K,HRACHOWITZ M,WANG-ERLANDSSON L,et al. Root zone in the Earth system[J]. Hydrology and Earth System Sciences,2024,28(19):4477-4499. doi: 10.5194/hess-28-4477-2024
|
[21] |
NIJZINK R,HUTTON C,PECHLIVANIDIS I,et al. The evolution of root-zone moisture capacities after deforestation:a step towards hydrological predictions under change?[J]. Hydrology and Earth System Sciences,2016,20(12):4775-4799. doi: 10.5194/hess-20-4775-2016
|
[22] |
MAO G Q,LIU J G. WAYS v1:a hydrological model for root zone water storage simulation on a global scale[J]. Geoscientific Model Development,2019,12(12):5267-5289. doi: 10.5194/gmd-12-5267-2019
|
[23] |
de BOER-EUSER T,MERIÖ L J,MARTTILA H. Understanding variability in root zone storage capacity in boreal regions[J]. Hydrology and Earth System Sciences,2019,23(1):125-138. doi: 10.5194/hess-23-125-2019
|
[24] |
WILLIAMS D G. Ecohydrology of water-controlled ecosystems:soil moisture and plant dynamics[J]. Eos,Transactions American Geophysical Union,2005,86(38):344.
|
[25] |
MCCORMICK E L,DRALLE D N,HAHM W J,et al. Widespread woody plant use of water stored in bedrock[J]. Nature,2021,597(7875):225-229. doi: 10.1038/s41586-021-03761-3
|
[26] |
HAHM W J,DRALLE D N,LAPIDES D A,et al. Geologic controls on apparent root-zone storage capacity[J]. Water Resources Research,2024,60(3):e2023WR035362. doi: 10.1029/2023WR035362
|
[27] |
SIMARD S W. Mycorrhizal networks facilitate tree communication,learning,and memory[M/OL]//BALUSKA F,GAGLIANO M,WITZANY G. Memory and Learning in Plants. Cham:Springer International Publishing,2018:191-213. https://doi.org/10.1007/978-3-319-75596-0_10.
|
[28] |
WANG G X,XIA J,LI X Y,et al. Critical advances in understanding ecohydrological processes of terrestrial vegetation:from leaf to watershed scale[J]. Chinese Science Bulletin,2021,66(28/29):3667-3683.
|
[29] |
STOCKER B D,TUMBER-DÁVILA S J,KONINGS A G,et al. Global patterns of water storage in the rooting zones of vegetation[J]. Nature Geoscience,2023,16(3):250-256.
|
[30] |
WANG-ERLANDSSON L,BASTIAANSSEN W G M,GAO H K,et al. Global root zone storage capacity from satellite-based evaporation[J]. Hydrology and Earth System Sciences,2016,20(4):1459-1481. doi: 10.5194/hess-20-1459-2016
|
[31] |
SENEVIRATNE S I,LEHNER I,GURTZ J,et al. Swiss prealpine Rietholzbach research catchment and lysimeter:32 year time series and 2003 drought event[J]. Water Resources Research,2012,48(6):2011WR011749. doi: 10.1029/2011WR011749
|
[32] |
BONAN G. Ecological climatology[M]. Cambridge,UK:Cambridge University Press,2015.
|
[33] |
SAVENIJE H H G. The hydrological system as a living organism[J].Proceedings of IAHS,2024,385 :1-4.
|
[34] |
GAO H. Landscape-based hydrological modelling[D]. Delft:Delft University of Technology,2015.
|
[35] |
OKI T,KANAE S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790):1068-1072. doi: 10.1126/science.1128845
|
[36] |
高红凯,刘俊国,高光耀,等 水源涵养功能概念的生态和水文视角辨析[J]. 地理学报,2023,78(1):139-148. (GAO H K,LIU J G,GAO G Y,et al. Ecological and hydrological perspectives of the water retention concept[J]. Acta Geographica Sinica,2023,78(1):139-148. (in Chinese)
GAO H K, LIU J G, GAO G Y, et al. Ecological and hydrological perspectives of the water retention concept[J]. Acta Geographica Sinica, 2023, 78(1): 139-148. (in Chinese)
|
[37] |
ZHANG Y Q,CHIEW F H S,PEÑA-ARANCIBIA J,et al. Global variation of transpiration and soil evaporation and the role of their major climate drivers[J]. Journal of Geophysical Research:Atmospheres,2017,122(13):6868-6881.
|
[38] |
GOOD S P,NOONE D,BOWEN G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[J]. Science,2015,349(6244):175-177. doi: 10.1126/science.aaa5931
|
[39] |
SAVENIJE H H G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary[J]. Hydrological Processes,2004,18(8):1507-1511. doi: 10.1002/hyp.5563
|
[40] |
WANG-ERLANDSSON L,van der ENT R J,GORDON L J,et al. Contrasting roles of interception and transpiration in the hydrological cycle:part 1:temporal characteristics over land[J]. Earth System Dynamics,2014,5(2):441-469. doi: 10.5194/esd-5-441-2014
|
[41] |
BUDYKO M I. Evaporation under natural conditions[M]. New York:Academic Press,1963.
|
[42] |
VRUGT J A,GUPTA H V,BASTIDAS L A,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models[J]. Water Resources Research,2003,39(8):2002WR001746. doi: 10.1029/2002WR001746
|
[43] |
SIVAPALAN M,BLÖSCHL G. Time scale interactions and the coevolution of humans and water[J]. Water Resources Research,2015,51(9):6988-7022. doi: 10.1002/2015WR017896
|
[44] |
BOUAZIZ L J E,STEELE-DUNNE S C,SCHELLEKENS J,et al. Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived soil water index[J]. Water Resources Research,2020,56(3):e2019WR026365. doi: 10.1029/2019WR026365
|
[45] |
de BOER-EUSER T,MCMILLAN H K,HRACHOWITZ M,et al. Influence of soil and climate on root zone storage capacity[J]. Water Resources Research,2016,52(3):2009-2024. doi: 10.1002/2015WR018115
|
[46] |
ZHAO J,XU Z X,SINGH V P. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique[J]. Journal of Hydrology,2016,540:959-972. doi: 10.1016/j.jhydrol.2016.07.013
|
[47] |
王璟京,高红凯,刘敏,等. 参数区域化在全球水文模型FLEX-Global中的应用[J]. 中国科学:地球科学,2021,51(5):805-823. (WANG J J,GAO H K,LIU M,et al. Parameter regionalization of the FLEX-Global hydrological model[J]. Science China Earth Sciences,2021,51(5):805-823. (in Chinese)
WANG J J, GAO H K, LIU M, et al. Parameter regionalization of the FLEX-Global hydrological model[J]. Science China Earth Sciences, 2021, 51(5): 805-823. (in Chinese)
|
[48] |
van OORSCHOT F,van der ENT R J,HRACHOWITZ M,et al. Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models[J]. Earth System Dynamics,2021,12(2):725-743. doi: 10.5194/esd-12-725-2021
|
[49] |
DRALLE D N,JESSE H W,DANA C K,et al. Technical note:accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes[J]. Hydrology and Earth System Sciences,2021,25(5):2861-2867. doi: 10.5194/hess-25-2861-2021
|
[50] |
van OORSCHOT F,van der ENT R J,ALESSANDRI A,et al. Influence of irrigation on root zone storage capacity estimation[J]. Hydrology and Earth System Sciences,2024,28(10):2313-2328. doi: 10.5194/hess-28-2313-2024
|
[51] |
ZHAO M,MCCORMICK E L,A G,et al. Substantial root-zone water storage capacity observed by GRACE and GRACE/FO[J]. EGUsphere,2024:1-28.
|
[52] |
任立良,刘新仁. 基于DEM的水文物理过程模拟[J]. 地理研究,2000,19(4):369-376. (REN L L,LIU X R. Hydrological processes modeling based on digital elevation model[J]. Geographical Research,2000,19(4):369-376. (in Chinese) doi: 10.3321/j.issn:1000-0585.2000.04.005
REN L L, LIU X R. Hydrological processes modeling based on digital elevation model[J]. Geographical Research, 2000, 19(4): 369-376. (in Chinese) doi: 10.3321/j.issn:1000-0585.2000.04.005
|
[53] |
石朋,芮孝芳,瞿思敏,等. 一种通过地形指数计算流域蓄水容量的方法[J]. 水科学进展,2008,19(2):264-267. (SHI P,RUI X F,QU S M,et al. Calculating storage capacity with topographic index[J]. Advances in Water Science,2008,19(2):264-267. (in Chinese) doi: 10.3321/j.issn:1001-6791.2008.02.017
SHI P, RUI X F, QU S M, et al. Calculating storage capacity with topographic index[J]. Advances in Water Science, 2008, 19(2): 264-267. (in Chinese) doi: 10.3321/j.issn:1001-6791.2008.02.017
|
[54] |
HUANG M Y,LIANG X,LIANG Y. A transferability study of model parameters for the variable infiltration capacity land surface scheme[J]. Journal of Geophysical Research:Atmospheres,2003,108(D22):2003JD003676. doi: 10.1029/2003JD003676
|
[55] |
GAO H K,CAI H Y,DUAN Z. Understanding the impacts of catchment characteristics on the shape of the storage capacity curve and its influence on flood flows[J]. Hydrology Research,2018,49(1):90-106. doi: 10.2166/nh.2017.245
|
[56] |
FAN Y,MIGUEZ-MACHO G,JOBBÁGY E G,et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(40):10572-10577.
|
[57] |
GAO H K,BIRKEL C,HRACHOWITZ M,et al. A simple topography-driven and calibration-free runoff generation module[J]. Hydrology and Earth System Sciences,2019,23(2):787-809. doi: 10.5194/hess-23-787-2019
|
[58] |
MONTANARI A,YOUNG G,SAVENIJE H H G,et al. “Panta rhei-everything flows”:change in hydrology and society:the IAHS scientific decade 2013—2022[J]. Hydrological Sciences Journal,2013,58(6):1256-1275. doi: 10.1080/02626667.2013.809088
|
[59] |
LIANG J,GAO H,FENICIA F,et al. Widespread increase of root zone storage capacity in the United States[J]. EGUsphere,2024:1-29.
|
[60] |
WAGENER T,MCINTYRE N,LEES M J,et al. Towards reduced uncertainty in conceptual rainfall-runoff modelling:dynamic identifiability analysis[J]. Hydrological Processes,2003,17(2):455-476. doi: 10.1002/hyp.1135
|
[61] |
夏军,张永勇,佘敦先,等. 城市水系统理论及其模型研制与应用[J]. 中国科学:地球科学,2024,54(3):725-744. (XIA J,ZHANG Y Y,SHE D X,et al. Urban water system theory and its model development and application[J]. Science China Earth Sciences,2024,54(3):725-744. (in Chinese)
XIA J, ZHANG Y Y, SHE D X, et al. Urban water system theory and its model development and application[J]. Science China Earth Sciences, 2024, 54(3): 725-744. (in Chinese)
|
[62] |
张珂,张企诺,陈新宇,等. 栅格新安江-地表地下双人工调蓄分布式水文模型[J]. 水资源保护,2021,37(5):94-101,139. (ZHANG K,ZHANG Q N,CHEN X Y,et al. Gridded Xin'anjiang-dual anthropogenic aboveground and underground regulation distributed hydrological model[J]. Water Resources Protection,2021,37(5):94-101,139. (in Chinese) doi: 10.3880/j.issn.1004-6933.2021.05.015
ZHANG K, ZHANG Q N, CHEN X Y, et al. Gridded Xin'anjiang-dual anthropogenic aboveground and underground regulation distributed hydrological model[J]. Water Resources Protection, 2021, 37(5): 94-101, 139. (in Chinese) doi: 10.3880/j.issn.1004-6933.2021.05.015
|
[63] |
CHEN X Y,ZHANG K,LUO Y N,et al. A distributed hydrological model for semi-humid watersheds with a thick unsaturated zone under strong anthropogenic impacts:a case study in Haihe River basin[J]. Journal of Hydrology,2023,623:129765. doi: 10.1016/j.jhydrol.2023.129765
|
[64] |
HAUSER E,SULLIVAN P L,FLORES A N,et al. Global-scale shifts in rooting depths due to anthropocene land cover changes pose unexamined consequences for critical zone functioning[J]. Earth's Future,2022,10(11):e2022EF002897. doi: 10.1029/2022EF002897
|
[65] |
ZENG Y,YANG X K,FANG N F,et al. Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions[J]. Agricultural and Forest Meteorology,2020,290:108001. doi: 10.1016/j.agrformet.2020.108001
|
[66] |
TROCH P A,CARRILLO G A,HEIDBÜCHEL I,et al. Dealing with landscape heterogeneity in watershed hydrology:a review of recent progress toward new hydrological theory[J]. Geography Compass,2009,3(1):375-392. doi: 10.1111/j.1749-8198.2008.00186.x
|
[67] |
SINGH C,WANG-ERLANDSSON L,FETZER I,et al. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions[J]. Environmental Research Letters,2020,15(12):124021. doi: 10.1088/1748-9326/abc377
|
[68] |
HUNT A G,SAHIMI M,GHANBARIAN B,et al. Predicting ecosystem net primary productivity by percolation theory and optimality principle[J]. Water Resources Research,2024,60(3):e2023WR036340. doi: 10.1029/2023WR036340
|
[69] |
NIJZINK R C,SCHYMANSKI S J. Vegetation optimality explains the convergence of catchments on the Budyko curve[J]. Hydrology and Earth System Sciences,2022,26(24):6289-6309. doi: 10.5194/hess-26-6289-2022
|