• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
YANG Yefeng, WEI Tongzhong, WANG Yin. A study on the sediment dispersion characteristics based on the polydisperse non-spherical particle CFD-DEM model[J]. Advances in Water Science, 2024, 35(4): 669-679. DOI: 10.14042/j.cnki.32.1309.2024.04.013
Citation: YANG Yefeng, WEI Tongzhong, WANG Yin. A study on the sediment dispersion characteristics based on the polydisperse non-spherical particle CFD-DEM model[J]. Advances in Water Science, 2024, 35(4): 669-679. DOI: 10.14042/j.cnki.32.1309.2024.04.013

A study on the sediment dispersion characteristics based on the polydisperse non-spherical particle CFD-DEM model

Funds: 

the National Natural Science Foundation of China 51870935

the Natural Science Foundation of Liaoning Province, China 2022-KF-18-05

More Information
  • Received Date: March 12, 2024
  • Published Date: July 25, 2024
  • To investigate the suspension and diffusion mechanisms of sediment particles under the action of fluids from both particle and flow field scales, a Gaussian curvature model is introduced in the discrete element method to characterize the nonlinear contact properties of non-spherical particles. Additionally, improvements are made to the drag force model and porosity models for non-spherical particles. By doing so, the polydispersed non-spherical particle CFD-DEM coupling numerical method is established. The accuracy and superiority of this model are validated through comparisons with physical experimental results. Subsequently, the suspension and diffusion processes of sediment under fluids are simulated. Results show that the sediment settling rate is positively correlated with the initial discharge quantity of particles and negatively correlated with flow velocity, while the escape rate shows an opposite trend. At high initial discharge, particle clustering effects promote fluid kinetic energy dissipation, causing gravity to surpass inertial forces and leading to rapid particle settling. At low initial discharge, higher fluid kinetic energy enhances horizontal particle transport. At lower flow velocities, particle shape significantly affects the spatial distribution of sediment particles.

  • [1]
    PRISETIAHADI K, YANAGI T. Seasonal variation in the behavior of tailing wastes in Buyat Bay, Indonesia[J]. Marine Pollution Bulletin, 2008, 57(1/2/3/4/5): 170-181.
    [2]
    范智涵, 贾永刚, 滕秀英, 等. 深海多金属结核开采潜在工程地质环境影响研究进展[J]. 工程地质学报, 2021, 29(6): 1676-1691.

    FAN Z H, JIA Y G, TENG X Y, et al. Review on potential engineering geological environment impacts of deep-sea polymetallic nodules mining[J]. Journal of Engineering Geology, 2021, 29(6): 1676-1691. (in Chinese)
    [3]
    LIU Z H, LIU K, CHEN X G, et al. Deep-sea rock mechanics and mining technology: state of the art and perspectives[J]. International Journal of Mining Science and Technology, 2023, 33(9): 1083-1115. doi: 10.1016/j.ijmst.2023.07.007
    [4]
    陈永平, 孙朴, 王娅娜, 等. 排放角度对波浪环境中圆管射流运动和稀释特性的影响[J]. 水科学进展, 2017, 28(6): 898-907. doi: 10.14042/j.cnki.32.1309.2017.06.011

    CHEN Y P, SUN P, WANG Y N, et al. Effects of discharge angles on hydrodynamics and dilution of round jets in wave environment[J]. Advances in Water Science, 2017, 28(6): 898-907. (in Chinese) doi: 10.14042/j.cnki.32.1309.2017.06.011
    [5]
    张中天, 金光球, 陈鹤翔, 等. 胶体颗粒在潜流带中沉积过程及机制[J]. 水科学进展, 2021, 32(5): 738-750. doi: 10.14042/j.cnki.32.1309.2021.05.009

    ZHANG Z T, JIN G Q, CHEN H X, et al. Deposition process and mechanism of colloidal particles in hyporheic zone[J]. Advances in Water Science, 2021, 32(5): 738-750. (in Chinese) doi: 10.14042/j.cnki.32.1309.2021.05.009
    [6]
    金小栋, 陈旭光, 刘金衷, 等. 深海采矿中不同成分底质对羽状流触发的影响[J]. 海洋工程, 2024, 42(4): 150-163.

    JIN X D, CHEN X G, LIU J Z, et al. The influence of different components of bottom material on the trigger of feather flow in deep sea mining[J]. The Ocean Engineering, 2024, 42(4): 150-163. (in Chinese)
    [7]
    李艳, 贺加贝. 海底多金属硫化物集矿过程固液两相流数值模拟研究[J]. 中南大学学报(自然科学版), 2022, 53(2): 461-470.

    LI Y, HE J B. Numerical simulation of solid-liquid two-phase flow of the gathering process of seafloor massive sulfide[J]. Journal of Central South University (Science and Technology), 2022, 53(2): 461-470. (in Chinese)
    [8]
    尹则高, 王盛, 孙灿. 规则波作用下垂直圆管负浮力射流的数值模拟[J]. 水科学进展, 2021, 32(5): 780-790. doi: 10.14042/j.cnki.32.1309.2021.05.013

    YIN Z G, WANG S, SUN C. Numerical simulation of negative buoyant jet with vertical round under the regular waves[J]. Advances in Water Science, 2021, 32(5): 780-790. (in Chinese) doi: 10.14042/j.cnki.32.1309.2021.05.013
    [9]
    柴朝晖, 杨国录, 王茜, 等. 紊流对粘性细颗粒泥沙絮凝影响[J]. 水科学进展, 2012, 23(6): 808-814. http://skxjz.nhri.cn/article/doi/CNKI:%2032.1309.P.20121101.1757.011

    CHAI Z H, YANG G L, WANG X, et al. Effect of turbulent flow on flocculation of fine cohesive sediment[J]. Advances in Water Science, 2012, 23(6): 808-814. (in Chinese) http://skxjz.nhri.cn/article/doi/CNKI:%2032.1309.P.20121101.1757.011
    [10]
    刘港慧, 刘磊. 深海采矿细颗粒羽状流数值模拟研究[J]. 海洋工程, 2023, 41(5): 150-160.

    LIU G H, LIU L. Numerical simulation of fine particle plume flow in deep-sea mining[J]. The Ocean Engineering, 2023, 41(5): 150-160. (in Chinese)
    [11]
    底瑛棠, 赵兰浩, 毛佳. 颗粒沉降问题的高解析度CFD-DEM-IBM流固耦合数值模拟方法[J]. 水科学进展, 2021, 32(2): 286-294. doi: 10.14042/j.cnki.32.1309.2021.02.014

    DI Y T, ZHAO L H, MAO J. A CFD-DEM-IBM method for sedimentation of particles with high resolution[J]. Advances in Water Science, 2021, 32(2): 286-294. (in Chinese) doi: 10.14042/j.cnki.32.1309.2021.02.014
    [12]
    WANG T, CHEN S H, LI M L, et al. A resolved CFD-DEM investigation into sand production under water flooding in unconsolidated reservoir[J]. Powder Technology, 2024, 442: 119859. doi: 10.1016/j.powtec.2024.119859
    [13]
    XIE J F, HU P, ZHU C L, et al. Turbidity currents propagating down an inclined slope: particle auto-suspension[J]. Journal of Fluid Mechanics, 2023, 954: A44. doi: 10.1017/jfm.2022.1041
    [14]
    赵兰浩, 管策, 张海容, 等. 坝前冒泡现象的水气两相运移机理数值模拟[J]. 水科学进展, 2020, 31(1): 91-101. doi: 10.14042/j.cnki.32.1309.2020.01.010

    ZHAO L H, GUAN C, ZHANG H R, et al. Numerical simulation of water-gas two-phase movement mechanism of bubbling phenomenon in front of dam[J]. Advances in Water Science, 2020, 31(1): 91-101. (in Chinese) doi: 10.14042/j.cnki.32.1309.2020.01.010
    [15]
    ZHONG W Q, YU A B, LIU X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152. doi: 10.1016/j.powtec.2016.07.010
    [16]
    PODLOZHNYUK A, PIRKER S, KLOSS C. Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework[J]. Computational Particle Mechanics, 2017, 4(1): 101-118. doi: 10.1007/s40571-016-0131-6
    [17]
    CHEN H, ZHAO S W, ZHOU X W. DEM investigation of angle of repose for super-ellipsoidal particles[J]. Particuology, 2020, 50: 53-66. doi: 10.1016/j.partic.2019.05.005
    [18]
    ZHAO Y Z, XU L, UMBANHOWAR P B, et al. Discrete element simulation of cylindrical particles using super-ellipsoids[J]. Particuology, 2019, 46: 55-66. doi: 10.1016/j.partic.2018.04.007
    [19]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [20]
    GOLDMAN R. Curvature formulas for implicit curves and surfaces[J]. Computer Aided Geometric Design, 2005, 22(7): 632-658. doi: 10.1016/j.cagd.2005.06.005
    [21]
    DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. doi: 10.1016/0301-9322(94)90011-6
    [22]
    HÖLZER A, SOMMERFELD M. New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology, 2008, 184(3): 361-365. doi: 10.1016/j.powtec.2007.08.021
    [23]
    王胤, 周令新, 杨庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.

    WANG Y, ZHOU L X, YANG Q. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation[J]. Rock and Soil Mechanics, 2019, 40(5): 2009-2015. (in Chinese)
    [24]
    ZHENG Q J, ZHOU Z Y, YU A B. Contact forces between viscoelastic ellipsoidal particles[J]. Powder Technology, 2013, 248: 25-33. doi: 10.1016/j.powtec.2013.03.020
    [25]
    GILLIES R G, SHOOK C A, XU J H. Modelling heterogeneous slurry flows at high velocities[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 1060-1065. doi: 10.1002/cjce.5450820523
    [26]
    任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497.

    REN Y B, WANG Y, YANG Q. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497. (in Chinese)
    [27]
    CHENG K, WANG Y, YANG Q, et al. Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method[J]. Computers and Geotechnics, 2017, 92: 22-40. doi: 10.1016/j.compgeo.2017.07.017

Catalog

    Article Metrics

    Article views (114) PDF downloads (35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return