[1]
|
GEORG K, MARTIN G, BEN M. Contribution potential of glaciers to water availability in different climate regimes[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(47):20223-20227. http://www.ncbi.nlm.nih.gov/pubmed/21059938 |
[2]
|
SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10):725-731. doi: 10.1038/nclimate1592 |
[3]
|
QIN D H, DING Y J, XIAO C D, et al. Cryospheric science:research framework and disciplinary system[J]. National Science Review, 2018, 5(2):255-268. doi: 10.1093/nsr/nwx108 |
[4]
|
YAO T D, XUE Y, CHEN D, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:multi-disciplinary approach with observation, modeling and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3):423-444. doi: 10.1175/BAMS-D-17-0057.1 |
[5]
|
IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world's water towers[J]. Nature, 2019, 577(7790):364-369. |
[6]
|
DING Y J, ZHANG S Q, ZHAO L, et al, Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64:245-253. doi: 10.1016/j.scib.2018.12.028 |
[7]
|
李忠勤.山地冰川物质平衡和动力过程模拟[M].北京:科学出版社, 2019.
LI Z Q. Mass balance and dynamic process simulation of mountain glacier[M]. Beijing:Science Press, 2019.(in Chinese) |
[8]
|
韩海东, 邵进荣, 林凤, 等.托木尔型冰川融水对气候变化敏感性的模型分析[J].气候变化研究进展, 2012, 8(5):357-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201205007
HAN H D, SHAO J R, LIN F, et al. Modeling the sensitivity of meltwater runoff of tuomuer-type glacier to climate changes[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(5):357-363. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201205007 |
[9]
|
SUN M, YAO X, LI Z, et al. Hydrological processes of glacier and snow melting and runoff in the Urumqi River source region, eastern Tianshan Mountains, China[J]. Journal of Geographical Sciences, 2015, 25:149-164. doi: 10.1007/s11442-015-1159-x |
[10]
|
ZHANG F, BAI L, LI L, et al. Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains, China[J]. Journal of Arid Land, 2016, 8:681-693. doi: 10.1007/s40333-016-0015-x |
[11]
|
张慧, 李忠勤, 牟建新, 等.近50年新疆天山奎屯河流域冰川变化及其对水资源的影响[J].地理科学, 2017, 37(11):1771-1777. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201711020
ZHANG H, LI Z Q, MOU J X, et al. Impact of the glacier change on water resources in the Kuytun River basin, Tianshan Mountains during recent 50 years[J]. Scientia Geographica Sinica, 2017, 37(11):1771-1777. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201711020 |
[12]
|
GAO H, LI H, DUAN Z, et al. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in central Asia[J]. Science of the Total Environment, 2018, 644:1160-1170. doi: 10.1016/j.scitotenv.2018.07.004 |
[13]
|
高鑫, 叶柏生, 张世强, 等. 1961-2006年塔里木河流域冰川融水变化及其对径流的影响[J].中国科学:地球科学, 2010, 40(5):654-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005014
GAO X, YE B S, ZHANG S Q, et al. Glacier melt water change and impact on Tarim River during 1961-2000[J]. SCIENTIA SINICA Terrae, 2010, 40(5):654-665. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005014 |
[14]
|
REN Z, SU F, XU B, et al. A coupled glacier-hydrology model and its application in eastern Pamir[J]. Journal of Geophysical Research Atmospheres, 2018, 123(24):13692-13713. http://www.onacademic.com/detail/journal_1000040905617310_b363.html |
[15]
|
LI Z, SHI X, TANG Q, et al. Partitioning the contributions of glacier melt and precipitation to the 1971-2010 runoff increases in a headwater basin of the Tarim River[J]. Journal of Hydrology, 2020, 583:124579. doi: 10.1016/j.jhydrol.2020.124579 |
[16]
|
WU J, DING Y, YANG J, et al. Spatial variation of stable isotopes in different waters during melt season in the Laohugou glacial catchment, Shule River basin[J]. Journal of Mountain Science, 2016, 13(8):1453-1463. doi: 10.1007/s11629-014-3076-3 |
[17]
|
李洪源, 赵求东, 吴锦奎, 等.疏勒河上游径流组分及其变化特征定量模拟[J].冰川冻土, 2019, 41(4):907-917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201904018
LI H Y, ZHAO Q D, WU J K, et al. Quantitative simulation of the runoff components and its variation characteristics in the upstream of the Shule River[J]. Journal of Glaciology and Geocryology, 2019, 41(4):907-917. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201904018 |
[18]
|
周嘉欣, 丁永建, 吴锦奎, 等.基流分割方法在疏勒河上游流域的应用对比分析[J].冰川冻土, 2019, 41(6):1456-1466. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201906019
ZHOU J X, DING Y J, WU J K, et al. Applied comparison analysis of base-flow separation methods in upper Shule River basin[J]. Journal of Glaciology and Geocryology, 2019, 41(6):1456-1466. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201906019 |
[19]
|
李忠勤, 李开明, 王林.新疆冰川近期变化及其对水资源的影响研究[J].第四纪研究, 2010, 30(1):96-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001009
LI Z Q, LI K M, WANG L. Study on recent glacier changes and their impact on water resources in Xijiang, North Western China[J]. Quaternary Sciences, 2010, 30(1):96-106. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001009 |
[20]
|
姚檀栋, 姚治君.青藏高原冰川退缩对河水径流的影响[J].自然杂志, 2010, 32(1):4-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201001002
YAO T D, YAO Z J. Impacts of glacial reretreat on runoff on Tibetan Plateau[J]. Chinese Journal of Nature, 2010, 32(1):4-8. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201001002 |
[21]
|
沈永平, 苏宏超, 王国亚.新疆冰川、积雪对气候变化的响应:Ⅰ:水文效应[J].冰川冻土, 2013, 35(3):513-527. http://d.wanfangdata.com.cn/Periodical/bcdt201303001
SHEN Y P, SU H C, WANG G Y. Responses of glaciers and snow cover to climate change in Xinjiang:I:hydrological effects[J]. Journal of Glaciology and Geocryology, 2013, 35(3):513-527. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bcdt201303001 |
[22]
|
DENG H, CHEN Y, LI Y. Glacier and snow variations and their impacts on regional water resources in mountains[J]. Journal of Geographical Science, 2019, 29:84-100. doi: 10.1007/s11442-019-1585-2 |
[23]
|
ZHAO Q D, DING Y J, WANG J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573:60-81. doi: 10.1016/j.jhydrol.2019.03.043 |
[24]
|
叶柏生, 丁永建, 焦克勤, 等.我国寒区径流对气候变暖的响应[J].第四纪研究, 2012, 32(1):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201201014
YE B S, DING Y J, JIAO K Q, et al. The response of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32(1):103-110. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201201014 |
[25]
|
丁永建, 效存德.冰冻圈变化及其影响研究:综合卷[M].北京:科学出版社, 2020.
DING Y J, XIAO C D. Cryospheric changes and their impacts:comprehensive volume[M]. Beijing:Science Press, 2020. (in Chinese) |
[26]
|
刘时银, 姚晓军, 郭万钦, 等.基于第二次冰川编目的中国冰川现状[J].地理学报, 2015, 70(1):3-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201501001
LIU S Y, YAO X J, GUO W Q, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201501001 |
[27]
|
高鑫, 西部冰川融水变化及其对径流的影响[D].兰州: 中国科学院寒区旱区环境与工程研究所, 2010.
GAO X.Glacier runoff variation and its influcence on river runoff in western China[D].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2010. (in Chinese) |
[28]
|
ZHANG S Q, GAO X, ZHANG X W. Glacial runoff likely reached peak in the mountainous areas of the Shiyang River basin, China[J]. Journal of Mountain Science, 2015, 12:382-395. doi: 10.1007/s11629-014-3077-2 |
[29]
|
陈仁升, 张世强, 阳勇.等, 冰冻圈变化对中国西部寒区径流的影响[M].北京:科学出版社, 2019.
CHEN R S, ZHANG S Q, YANG Y, et al. The impact of cryospheric change on runoff of cold regions in Western China[M]. Beijing:Science Press, 2019. (in Chinese) |
[30]
|
ZHAO Q D, ZHANG S Q, DING Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River catchment, central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6):2383-2402. doi: 10.1175/JHM-D-14-0231.1 |
[31]
|
ZHANG Z, DENG S, ZHAO Q, et al. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River basin, north-eastern edge of the Tibetan Plateau[J]. Hydrological Processes, 2019, 33:1059-1074. doi: 10.1002/hyp.13384 |
[32]
|
ZHANG S Q, GAO X, ZHANG X W, et al. Projection of glacier runoff in Yarkant River basin and Beida River basin, Western China[J]. Hydrological Processes, 2012, 26(18):2773-2781. doi: 10.1002/hyp.8373 |
[33]
|
REN Z, SU F, XU B, et al. A coupled glacier-hydrology model and its application in eastern Pamir[J]. Journal of Geophysical Research Atmospheres, 2018, 123(24):13692-13713. http://www.onacademic.com/detail/journal_1000040905617310_b363.html |
[34]
|
LUO Y, ARNOLD J, LIU S Y, et al. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, Northwest China[J]. Journal of Hydrology, 2013, 477:72-85. doi: 10.1016/j.jhydrol.2012.11.005 |
[35]
|
GAO B, YANG D, QIN Y, et al. Change in frozen grounds and its effect on regional hydrology in the upper Heihe basin, on the Northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2):657-673. doi: 10.5194/tc-12-657-2018 |
[36]
|
WANG X Y, XU C Y, YONG B, et al. Understanding the discharge regime of a glacierized alpine catchment in the Tianshan Mountains using an improved HBV-D hydrological model[J]. Global and Planetary Change, 2018, 172:211-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c575b47b205425da6e1e5327ca39bc4c |
[37]
|
DUAN K, YAO T, WANG N, et al. Numerical simulation of Urumqi Glacier No. 1 in the Eastern Tianshan, central Asia from 2005 to 2070[J]. Chinese Science Bulletin, 2012, 57:4505-4509. doi: 10.1007/s11434-012-5469-4 |
[38]
|
ZHANG S Q, YE B S, LIU S Y, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China:part Ⅰ:model development[J]. Hydrological Processes, 2012, 26(11):1686-1696. doi: 10.1002/hyp.8286 |
[39]
|
GAN R, LUO Y, ZUO Q, et al. Effects of projected climate change on the glacier and runoff generation in the Naryn River basin, central Asia[J]. Journal of Hydrology, 2015, 523:240-251. doi: 10.1016/j.jhydrol.2015.01.057 |
[40]
|
JIANG X, WANG N, HE J, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55:2079-2087. doi: 10.1007/s11434-010-3068-9 |
[41]
|
YOU Q, FRAEDRICH K, SIELMANN F, et al. Present and projected degree days in China from observation, reanalysis and simulations[J]. Climate Dynamics, 2014, 43, 1449-1462. doi: 10.1007/s00382-013-1960-0 |
[42]
|
KARAKOTI I, KESARWANI K, MEHTA M, et al. Extended T-index models for glacier surface melting:a case study from Chorabari Glacier, central Himalaya, India[J]. Theoretical and Applied Climatology, 2016, 126:401-410. doi: 10.1007/s00704-016-1753-6 |
[43]
|
KAYASTHA R B, KAYASTHA R. Glacio-hydrological degree-day model (GDM) useful for the Himalayan River basins[C]//DIMRI A, BOOKHAGEN B, STOFFEL M, et al. Himalayan Weather and Climate and Their Impact on the Environment. Cham: Springer, 2020. doi: 10.1007%2F978-3-030-29684-1_19 |
[44]
|
HAN H, DING Y, LIU S, et al. Regimes of runoff components on the debris-covered Koxkar glacier in Western China[J]. Journal of Mountain Science, 2015, 12:313-329. doi: 10.1007/s11629-014-3163-5 |
[45]
|
LI K, LI Z, GAO W, et al. Recent glacial retreat and its effect on water resources in eastern Xinjiang[J]. Chinese Science Bulletin, 2011, 56:3596-3604. doi: 10.1007/s11434-011-4720-8 |
[46]
|
张廷军, 车涛.北半球积雪及其变化[M].北京:科学出版社, 2019.
ZHANG T J, CHE T. Snow cover and its changes in Northern hemisphere[M]. Beijing:Science Press, 2019. (in Chinese) |
[47]
|
WANG J, LI S. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China[J]. Science China Earth Science, 2006, 49:881-888. doi: 10.1007/s11430-006-0881-8 |
[48]
|
LI B, CHEN Y, CHEN Z, et al. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China[J]. Journal of Geographical Sciences, 2013, 23:17-30. doi: 10.1007/s11442-013-0990-1 |
[49]
|
JIN H, JU Q, YU Z, et al. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River basin, Southeastern Qinghai-Tibetan Plateau, China[J]. Natural Hazards, 2019, 99:931-950. doi: 10.1007/s11069-019-03784-0 |
[50]
|
ZHANG W, KANG S, SHEN Y, et al. Response of snow hydrological processes to a changing climate during 1961 to 2016 in the headwater of Irtysh River basin, Chinese Altai Mountains[J]. Journal of Mountain Science, 2017, 14:2295-2310. doi: 10.1007/s11629-017-4556-z |
[51]
|
QIU L, YOU J, QIAO F, et al. Simulation of snowmelt runoff in ungauged basins based on MODIS:a case study in the Lhasa River basin[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28:1577-1585. doi: 10.1007/s00477-013-0837-4 |
[52]
|
HUANG J B, WEN J W, WANG B, et al. Numerical analysis of the combined rainfall-runoff process and snowmelt for the Alun River basin, Heilongjiang, China[J]. Environmental Earth Sciences, 2015, 74:6929-6941. doi: 10.1007/s12665-015-4694-y |
[53]
|
胡汝骥.中国积雪与雪灾防治[M].北京:中国环境科学出版社, 2013.
HU R J. Snow cover and snow hazard prevention in China[M]. Beijing:China Environmental Science Press, 2013. (in Chinese)). |
[54]
|
SUN J, WANG X, CAO Y, et al. Analysis of spatial and temporal evolution of hydrological and meteorological elements in Nenjiang River basin, China[J]. Theoretical and Applied Climatology, 2019, 137:941-961. doi: 10.1007/s00704-018-2641-z |
[55]
|
LI F, ZHANG G, XU Y J. Spatiotemporal variability of climate and streamflow in the Songhua River basin, Northeast China[J]. Journal of Hydrology, 2014, 514:53-64. doi: 10.1016/j.jhydrol.2014.04.010 |
[56]
|
朱景亮.松花江流域融雪产流特征及其影响因素研究[D].北京: 中国科学院研究生院, 2015. http://d.wanfangdata.com.cn/thesis/Y2962530
ZHU J L. Snowmelt runoff characteristics and its influencing factors of Songhua River basin[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2015. (in Chinese) http://d.wanfangdata.com.cn/thesis/Y2962530 |
[57]
|
YE B S, DING Y J, KANG E S, et al. Response of the snowmelt and glacier runoff to the climate warming-up in the last 40 years in Xinjiang Autonomous Region, China[J]. Science China Earth Science, 1999, 42:44-51. doi: 10.1007/BF02878852 |
[58]
|
ZHANG G, XIE H, YAO T, et al. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM)[J]. Journal of Hydrology, 2014, 519:976-987. doi: 10.1016/j.jhydrol.2014.08.022 |
[59]
|
WANG R, YAO Z, LIU Z, et al. Snow cover variability and snowmelt in a high-altitude ungauged catchment[J]. Hydrological Processes, 2015, 29(17):3665-3676. doi: 10.1002/hyp.10472 |
[60]
|
KHADKA D, BABEL M S, SHRESTHA S, et al. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region[J]. Journal of Hydrology, 2014, 511(4):49-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a028fc3a7ffdd763b970b2febc85d09d |
[61]
|
STEWART I T. Changes in snowpack and snowmelt runoff for key mountain regions[J]. Hydrological Processes, 2009, 23(1):78-94. doi: 10.1002/hyp.7128 |
[62]
|
TEDESCO M, MONAGHAN A J. An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability[J]. Geophysical Research Letters, 2009, 36(18):120-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54356a6e922f78bd7ab395139dc37bcc |
[63]
|
吕爱锋, 贾绍凤, 燕华云, 等.三江源地区融雪径流时间变化特征与趋势分析[J].资源科学, 2009(10):76-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200910011
LYU A F, JIA S F, YAN H Y, et al. Temporal variations and trend analysis of the snowmelt runoff timing across the source regions of the Yangtze River, Yellow River and Lancang River[J]. Resources Science, 2009(10):76-81. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200910011 |
[64]
|
SHEN Y J, SHEN Y J, FINK M, et al. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains[J]. Journal of Hydrology, 2018, 557:173-181. doi: 10.1016/j.jhydrol.2017.12.035 |
[65]
|
沈永平, 王国亚, 苏宏超, 等.新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J].冰川冻土, 2007, 29(6):845-854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200706001
SHEN Y P, WANG G Y, SU H C, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan River basin with snow-dominated of the Altay Mountains region, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29(6):845-854. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200706001 |
[66]
|
CHANG J, WANG G, LI C, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Science China Earth Science, 2015, 58:727-738. doi: 10.1007/s11430-014-5009-y |
[67]
|
YANG Y, WU Q, HOU Y, et al. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique[J]. Science of the Total Environment, 2017, 605/606:199-210. doi: 10.1016/j.scitotenv.2017.06.213 |
[68]
|
曹伟, 盛煜, 吴吉春, 等.黄河源区多年冻土活动层土壤水文过程季节变异分析[J].水科学进展, 2018, 29(1):1-10. doi: 10.14042/j.cnki.32.1309.2018.01.001
CAO W, SHENG Y, WU J C, et al. Seasonal variation of soil hydrological process of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29(1):1-10. (in Chinese) doi: 10.14042/j.cnki.32.1309.2018.01.001 |
[69]
|
WANG G X, MAO T X, CHANG J, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550:307-317. doi: 10.1016/j.jhydrol.2017.05.020 |
[70]
|
WANG W, WU T H, ZHAO L, et al. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data[J]. Journal of Hydrology, 2018, 560:220-229. doi: 10.1016/j.jhydrol.2018.03.032 |
[71]
|
赵林, 胡国杰, 邹德富, 等.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊, 2019, 34(11):1233-1246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201911006
ZHAO L, HU G J, ZOU D F, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1233-1246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201911006 |
[72]
|
张艳林, 常晓丽, 梁继, 等.高寒山区冻土对水文过程的影响研究:以黑河上游八宝河为例[J].冰川冻土, 2016, 38(5):1362-1372. http://d.wanfangdata.com.cn/Periodical/bcdt201605022
ZHANG Y L, CHANG X L, LIANG J, et al. Influence of frozen ground on hydrological processes in alpine regions:a case study in an upper reach of the Heihe River[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1362-1372. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bcdt201605022 |
[73]
|
李太兵, 王根绪, 胡宏昌, 等.长江源多年冻土区典型小流域水文过程特征研究[J].冰川冻土, 2009, 31(1):82-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200901012
LI T B, WANG G X, HU H C, et al. Hydrological process in a typical small permafrost watershed at the headwaters of Yangtze River[J]. Journal of Glaciology and Geocryology, 2009, 31(1):82-88. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200901012 |
[74]
|
BAI W, WANG G, LIU G. Effects of elevated air temperatures on soil thermal and hydrologic processes in the active layer in an alpine meadow ecosystem of the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2012, 9:243-255. doi: 10.1007/s11629-012-2117-z |
[75]
|
ZHANG Z, WU Q, GAO S, et al. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region[J]. Environmental Earth Sciences, 2017, 76:194. doi: 10.1007/s12665-017-6518-8 |
[76]
|
HU H, WANG G, WANG Y, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54:1225-1233. http://www.cqvip.com/QK/86894X/20097/29817638.html |
[77]
|
HU G, ZHAO L, LI R, et al. Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25:713-727. doi: 10.1007/s11769-015-0733-6 |
[78]
|
DU X, FANG M, LYU H, et al. Effect of snowmelt infiltration on groundwater recharge in a seasonal soil frost area:a case study in Northeast China[J]. Environmental Monitoring and Assessment, 2019, 191:151. doi: 10.1007/s10661-019-7285-7 |
[79]
|
LI Z, FENG Q, WANG Q, et al. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in Northwestern China[J]. Global and Planetary Change, 2016, 136:41-51. doi: 10.1016/j.gloplacha.2015.12.002 |
[80]
|
MA Q, JIN H J, BENSE V F, et al. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China[J]. Advances in Climate Change Research, 2020, 10(4):225-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz-e201904004 |
[81]
|
WANG T, YANG H, YANG D, et al. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J]. Journal of Hydrology, 2018, 558:301-313. doi: 10.1016/j.jhydrol.2018.01.050 |
[82]
|
WAN C, LI K, SHEN S, et al. Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322:561-578. doi: 10.1007/s10967-019-06720-5 |
[83]
|
JIANG J. Quantifying the influence of groundwater discharge induced by permafrost degradation on lake water budget in Qinghai-Tibet Plateau:using 222Rn and stable isotopes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323:1125-1134. doi: 10.1007/s10967-020-07025-8 |
[84]
|
SUN A L, YU Z B, ZHOU J. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia[J]. Science of The Total Environment, 2020.[doi: 10.1016/j.scitotenv.2019.135632] |
[85]
|
WANG S, SHENG Y, LI J, et al. An estimation of ground ice volumes in permafrost layers in Northeastern Qinghai-Tibet Plateau, China[J]. Chinese Geographical Science, 2018, 28:61-73. doi: 10.1007/s11769-018-0932-z |
[86]
|
LUO J, NIU F, LIN Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60:556-564. doi: 10.1007/s11434-015-0730-2 |
[87]
|
YANG Y, WU Q, YUN H, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes[J]. Global and Planetary Change, 2016, 140:1-8. doi: 10.1016/j.gloplacha.2016.03.006 |
[88]
|
PAN X, YU Q, YOU Y, et al. Contribution of supra-permafrost discharge to thermokarst lake water balances on the Northeastern Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2017, 555:621-630. doi: 10.1016/j.jhydrol.2017.10.046 |
[89]
|
GAO T, ZHANG T, CAO L, et al. Reduced winter runoff in a mountainous permafrost region in the Northern Tibetan Plateau[J]. Cold Regions Science and Technology, 2016, 126:36-43. doi: 10.1016/j.coldregions.2016.03.007 |
[90]
|
LIU J, HAYAKAWA N, LU M, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science and Technology, 2003, 37:15-24. doi: 10.1016/S0165-232X(03)00012-0 |
[91]
|
陆胤昊, 叶柏生, 李翀.近50a来我国东北多年冻土区南缘海拉尔河流域径流变化特征分析[J].冰川冻土, 2014, 36(2):394-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201402019
LU Y H, YE B S, LI C. Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958-2008[J]. Journal of Glaciology and Geocryology, 2014, 36(2):394-402. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201402019 |
[92]
|
NIU L, YE B, LI J. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Science, 2011, 54:615-624. doi: 10.1007/s11430-010-4073-1 |
[93]
|
QIN J, DING Y J, HAN T D. Identification of the factors influencing the baseflow in the permafrost region of the Northeastern Qinghai-Tibet Plateau[J]. Water, 2017, 9(9):1-16. http://www.researchgate.net/publication/319601274_Identification_of_the_Factors_Influencing_the_Baseflow_in_the_Permafrost_Region_of_the_Northeastern_Qinghai-Tibet_Plateau |
[94]
|
WANG X Q, CHEN R S, HAN C T, et al. Changes in river discharge in typical mountain permafrost catchments, Northwestern China[J]. Quaternary International, 2018, 519:32-41. http://www.sciencedirect.com/science/article/pii/S104061821830819X |
[95]
|
LAN C, ZHANG Y, BOHN T J, et al. Frozen soil degradation and its effects on surface hydrology in the Northern Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(16):8276-8298. doi: 10.1002/2015JD023193 |
[96]
|
SONG C, WANG G, MAO T, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China Earth Science, 2020, 63:292-302. doi: 10.1007/s11430-018-9383-6 |
[97]
|
张菲, 刘景时, 巩同梁.喜马拉雅山北坡典型高山冻土区冬季径流过程[J].地球科学进展, 2006, 21(12):1321-1338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200612015
ZHANG F, LIU J S, GONG T L. Winter runoff in a typical alpine permafrost region, Tibet-Himalayas[J]. Advances in Earth Science, 2006, 21(12):1321-1338(in Chinese)). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200612015 |
[98]
|
QUINTON W L, BALTZER J L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)[J]. Hydrogeology Journal, 2012, 21(1):201-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbffb48ac19da1fd9dcec5046960494d |
[99]
|
WANG L, ZHOU J, JIA Q, et al. Development of a land surface model with coupled snow and frozen soil physics[J]. Water Resources Research, 2017, 53(6):5085-5103. doi: 10.1002/2017WR020451 |