• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

二阶双系数动态亚格子应力模型

唐学林, 钱忠东, 吴玉林

唐学林, 钱忠东, 吴玉林. 二阶双系数动态亚格子应力模型[J]. 水科学进展, 2004, 15(1): 50-55.
引用本文: 唐学林, 钱忠东, 吴玉林. 二阶双系数动态亚格子应力模型[J]. 水科学进展, 2004, 15(1): 50-55.
TANG Xue-lin, QIAN Zhong-dong, WU Yu-lin. Second-order dynamic sub-grid-scale stress model with double coefficients[J]. Advances in Water Science, 2004, 15(1): 50-55.
Citation: TANG Xue-lin, QIAN Zhong-dong, WU Yu-lin. Second-order dynamic sub-grid-scale stress model with double coefficients[J]. Advances in Water Science, 2004, 15(1): 50-55.

二阶双系数动态亚格子应力模型

基金项目: 国家自然科学基金资助项目(50176022)
详细信息
    作者简介:

    唐学林(1969- ),男,河南南阳人,清华大学博士研究生,主要从事流体机械内的流体流动和固液两相流动研究.E-mail:tangxuelin@tsinghua.org.cn

  • 中图分类号: TV136

Second-order dynamic sub-grid-scale stress model with double coefficients

Funds: The project is supported by National Natural Science Foundation of China (No.50176022).
  • 摘要: 基于亥姆霍兹速度分解定理和Smagorinsky模型,提出二阶双系数动态亚格子尺度应力模型,即亚格子尺度应力是可解的应变率张量和旋转率张量的函数。应用有限差分法对此模型的控制方程进行了离散,并数值模拟得到了弯管内部的流场分布和压力分布。把雷诺数为40000的弯管流动的实验数据和此模型的模拟结果相比较,证明此模型是可行、可靠的。
    Abstract: Based on the Cauchy-Helmholtz theorem and the Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model with two dynamic coefficents is proposed,in which the sub-grid scale stress is the function of both strain-rate tensor and rotation-rate tensor.The velocity and pressure fields are calculated by using the simplec algorithm and the finite difference approximation to discretice the governing equations.Compatison between computational and experimental results of velovity and pressure fields in a curving conduit is conducted.The computarional results are in good agreement with the experimental ones.
  • [1] Smagrinsky J.General Circulation Experiments with the primitive equations Ⅰ[J].Mon Weath Rev,1963,91 (3):99-165.
    [2] Deardorff J W.A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers[J].J Fluid Mechanics,1970,41(2):453-480.
    [3] Schumann U.Subgrid Scale Model for Finite-Difference Simulations of Turbulent Flows in Plane Channels and Annuli[J].J Comp Phys,1975,18(3):376-404.
    [4] Germano M,Piomelli U,et al.A Dynamic Subgrid-Scale Eddy Viscosity Model[J].Phys Fluids,1991,A3(7):1760-1765.
    [5] Lilly D K.A proposed modification of the Germano subgrid-scale closure method[J].Phys Fluids A,1992,4(3):633-635.
    [6] Yan Zang,Robert L Street,Jeffrey R Koseff.A dynamic mixed subgrid-scale model and its application to turbulent recirculation flows[J].Phys Fluids A,1993,5(12):3186-3196.
    [7] Sandip Ghosal,Thomas S Lund,et al.A dynamic localization model for large-eddy simulation of turbulent flows[J].J Fluid Mech,1995,286:229-255.
    [8] Taylor A M,Whitelaw J H,et al.Curved Ducts with Strong Secondary Motion:Velocity Measurements of Developing Laminar and Turbulent Flow[J].J Of Fluids Engineering,1982,104(3):350-359.
    [9] Humphrey J A C,Whitelaw J H,et al.Turbulent flow in a square duct with strong curvature[J].J Fluid Mech,1981,103:443-463.
    [10] Joel H.Ferziger Direct and Large Eddy Simulation of Turbulence[J].Transaction of the Japan.Society of Mechanical Engineers(B),2000,66(651):2-11.
计量
  • 文章访问数:  132
  • HTML全文浏览量:  23
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-09-21
  • 修回日期:  2002-11-27
  • 刊出日期:  2004-01-24

目录

    /

    返回文章
    返回