• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

澜沧江-湄公河流域水库联合调度防洪作用

侯时雨, 田富强, 陆颖, 倪广恒, 卢麾, 刘慧, 魏靖

侯时雨, 田富强, 陆颖, 倪广恒, 卢麾, 刘慧, 魏靖. 澜沧江-湄公河流域水库联合调度防洪作用[J]. 水科学进展, 2021, 32(1): 68-78. DOI: 10.14042/j.cnki.32.1309.2021.01.007
引用本文: 侯时雨, 田富强, 陆颖, 倪广恒, 卢麾, 刘慧, 魏靖. 澜沧江-湄公河流域水库联合调度防洪作用[J]. 水科学进展, 2021, 32(1): 68-78. DOI: 10.14042/j.cnki.32.1309.2021.01.007
HOU Shiyu, TIAN Fuqiang, LU Ying, NI Guangheng, LU Hui, LIU Hui, WEI Jing. Potential role of coordinated operation of transboundary multi-reservoir system to reduce flood risk in the Lancang-Mekong River basin[J]. Advances in Water Science, 2021, 32(1): 68-78. DOI: 10.14042/j.cnki.32.1309.2021.01.007
Citation: HOU Shiyu, TIAN Fuqiang, LU Ying, NI Guangheng, LU Hui, LIU Hui, WEI Jing. Potential role of coordinated operation of transboundary multi-reservoir system to reduce flood risk in the Lancang-Mekong River basin[J]. Advances in Water Science, 2021, 32(1): 68-78. DOI: 10.14042/j.cnki.32.1309.2021.01.007

澜沧江-湄公河流域水库联合调度防洪作用

基金项目: 

国家重点研发计划资助项目 2016YFA0601603

国家自然科学基金资助项目 51961125204

详细信息
    作者简介:

    侯时雨(1994-), 女, 陕西三原人, 博士研究生, 主要从事水文水资源研究。E-mail:housy16@mails.tsinghua.edu.cn

    通讯作者:

    田富强, E-mail:tianfq@tsinghua.edu.cn

  • 中图分类号: P33

Potential role of coordinated operation of transboundary multi-reservoir system to reduce flood risk in the Lancang-Mekong River basin

Funds: 

the National Key R&D Program of China 2016YFA0601603

the National Natural Science Foundation of China 51961125204

  • 摘要: 澜沧江-湄公河流域汛期洪灾频发,气候变化极有可能进一步加剧该区域洪水的量级和发生频率,需要上下游合作共同应对。建立了澜沧江-湄公河全流域分布式水文及水库调度模型,模拟1991-2005年全流域13条支流和5个干流防洪控制断面的逐日天然流量过程,在此基础上模拟全流域已建、在建和规划水库的联合调度过程,分析防洪作用。结果表明:①全流域水库联合调度对湄公河5个主要断面均有显著的防洪作用,在完全按照防洪目标对水库进行调度的情况下可将200年一遇洪水减至20~50年一遇。②湄公河左岸支流的防洪能力远高于右岸,具有较高防洪能力的支流有澜沧江、南乌河、南俄河、南屯河、濛河、色公河和桑河。③对不同断面起主要防洪作用的支流不同:在琅勃拉邦上游,澜沧江、南乌河起主要作用;在那空帕农断面,南俄河与南屯河加总的防洪作用与澜沧江基本相等;在巴色下游,濛河和色公河的作用均超过澜沧江。澜湄合作机制为上下游防洪合作提供了重要契机,研究成果可为流域国协商建立联合防洪调度机制提供参考。
    Abstract: The Lancang-Mekong River (LMR) basin has historically been affected by severe floods and is likely to suffer further flood events with higher peaks and longer duration in the future due to climate change, which calls for collective action to respond. This study examined the potential flood control effect of coordinated operation of the LMR transboundary multi-reservoir system by establishing a distributed hydrological model coupled with a reservoir operating model, simulating the runoff of 13 tributaries and 5 mainstream sections. Results show that:① Flood magnitude at the five sections along the Mekong River is significantly reduced by mitigating flood recurrence from 200 years to 20-50 years.② In terms of flood control, the left-bank tributaries contribute more than the right bank. Tributaries with relatively higher flood control capacity are:Lancang, Nam Ou, Nam Ngum and Nam Theun, Nam Mun, Se Kong and Se San. ③ Different tributaries play a major role in flood control across regions. Luang Prabang's main flood control tributaries are Lancang and Nam Ou. At Nakhon Phanom, Lancang's flood control contribution is same as Nam Ngum and Nam Theun's sum. In the downstream of Pakse, the flood control contribution of Nam Mun and Se Kong are higher than Lancang. This research provides a reference for transboundary flood control cooperation between riparian countries, which face an important opportunity underpinned by the Lancang-Mekong Cooperation Mechanism (LMC).
  • 图  1   澜沧江-湄公河流域水库和水文站点分布

    Fig.  1   Dams and hydrological gauges in the Lancang-Mekong River basin

    图  2   5个防洪控制断面n年一遇的径流过程线

    Fig.  2   Flood hydrographs in different flood recurrence intervals at 5 sections on the Mekong River

    图  3   13条支流年均最大30 d洪量和库容分布

    Fig.  3   Annual largest 30-day flood volumes and total reservoirs′ storages of 13 tributaries

    图  4   10条支流的IFD, 200, 20IFD, 200, 5

    Fig.  4   IFD, 200, 20 and IFD, 200, 5 of 10 tributaries

    图  5   将200年一遇洪水分别降至20年一遇和5年一遇的支流水库调度过程

    Fig.  5   Flood processes of 10 tributaries under reservoir operation to mitigate flood recurrence interval from 200 years (inflow) to 20 and 5 years (outflow)

    表  1   模拟流量在湄公河干流8个水文站的ENS

    Table  1   ENS values of simulated daily runoff at 8 hydrological gauges on the Lancang-Mekong River

    水文站 率定期 验证期
    允景洪 0.79 0.67
    清盛 0.78 0.59
    琅勃拉邦 0.71 0.89
    廊开 0.81 0.85
    那空帕农 0.85 0.54
    穆达汉 0.86 0.69
    巴色 0.75 0.79
    上丁 0.82 0.78
    下载: 导出CSV

    表  2   湄公河干流5个防洪控制断面的削峰率以及13条支流的防洪贡献率 %

    Table  2   Peak-clipping rates at 5 sections and flood control contribution rates of 13 tributaries

    项目 支流 200年一遇洪水减至5年一遇 200年一遇洪水减至20年一遇
    清盛 琅勃拉邦 那空帕农 巴色 金边 清盛 琅勃拉邦 那空帕农 巴色 金边
    断面削峰率 11.3 8.6 5.7 6.7 6.9 6.7 4.9 2.9 2.7 2.7
    支流水库防洪贡献率 澜沧江 95.0 62.5 29.6 14.5 9.7 97.5 77.9 38.2 23.6 15.4
    南垒河 5.0 3.3 1.6 0.8 0.5 2.5 2.0 1.0 0.6 0.4
    南乌河 - 34.2 15.4 7.4 4.8 - 20.2 8.3 4.8 3.0
    南俄河 - - 17.6 8.4 5.5 - - 31.4 18.2 11.4
    南屯河 - - 12.3 5.9 3.9 - - 9.5 5.5 3.4
    颂堪河 - - 23.5 11.3 7.4 - - 11.7 6.8 4.2
    色邦亨河 - - - 0 0 - - - 0 0
    色敦河 - - - 1.1 0.7 - - - 0.4 0.2
    濛河 - - - 50.7 33.5 - - - 40.1 25.2
    桑河 - - - - 8.6 - - - - 11.3
    色公河 - - - - 14.3 - - - - 21.3
    斯雷博河 - - - - 7.9 - - - - 3.4
    洞里萨河 - - - - 3.1 - - - - 0.9
    下载: 导出CSV
  • [1]

    MRC. State of the basin report 2010[R]. Vientiane: MRC, 2011.

    [2] 林芸, 段玮, 刘阳容.澜沧江上游流域暴雨天气成因分析[J].科技资讯, 2015, 13(34):129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201534074.htm

    LIN Y, DUAN W, LIU Y R. Causal analysis of stormy weather in the upstream of Lancang River basin[J]. Science & Technology Information, 2015, 13(34):129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201534074.htm

    [3]

    MRC. State of the basin report 2018[R]. Vientiane: MRC, 2019.

    [4] 游珍, 封志明, 姜鲁光, 等.澜沧江-湄公河流域人口分布及其与地形的关系[J].山地学报, 2014, 32(1):21-29. doi: 10.3969/j.issn.1008-2786.2014.01.003

    YOU Z, FENG Z M, JIANG L G, et al. Population distribution and its spatial relationship with terrain elements in Lancang-Mekong River basin[J]. Mountain Research, 2014, 32(1):21-29. (in Chinese) doi: 10.3969/j.issn.1008-2786.2014.01.003

    [5]

    MRC. Annual Mekong flood report 2008[R]. Vientiane: MRC, 2009.

    [6]

    USGS. The world's largest floods, past and present: their causes and magnitudes[R]. Virginia: US Geological Survey, 2004.

    [7]

    CHINH D T, GAIN A K, DUNG N V, et al. Multi-variate analyses of flood loss in Can Tho City, Mekong Delta[J]. Water, 2015, 8(1):6. doi: 10.3390/w8010006

    [8] 陈兴茹, 王兴勇, 白音包力皋. 1962年以来湄公河流域国家洪灾损失时空分布分析[J].灾害学, 2019, 34(1):113-116. doi: 10.3969/j.issn.1000-811X.2019.01.021

    CHEN X R, WANG X Y, BAIYINBAOLIGAO. Analysis of spatial and temporal distribution of flood losses in Mekong River basin since 1962[J]. Journal of Catastrophology, 2019, 34(1):113-116. (in Chinese) doi: 10.3969/j.issn.1000-811X.2019.01.021

    [9] 陈兴茹, 王兴勇, 白音包力皋.湄公河流域洪旱灾害损失分析[J].水利经济, 2019, 37(1):54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJJ201901011.htm

    CHEN X R, WANG X Y, BAIYINBAOLIGAO. Flood and drought losses in Mekong River basin[J]. Journal of Economics of Water Resources, 2019, 37(1):54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLJJ201901011.htm

    [10]

    MRC. Assessment of basin-wide development scenarios: main report[R]. Vientiane: MRC, 2010.

    [11]

    HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, et al. Global flood risk under climate change[J]. Nature Climate Change, 2013, 3(9):816-821. doi: 10.1038/nclimate1911

    [12]

    RÄSÄNEN T A, KUMMU M. Spatiotemporal influences of ENSO on precipitation and flood pulse in the Mekong River basin[J]. Journal of Hydrology, 2013, 476(7):154-168. https://www.sciencedirect.com/science/article/abs/pii/S0022169412009031

    [13]

    VÄSTILÄ K, KUMMU M, SANGMANEE C, et al. Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains[J]. Journal of Water and Climate Change, 2010, 1(1):67-86. doi: 10.2166/wcc.2010.008

    [14]

    HOANG L P, LAURI H, KUMMU M, et al. Mekong River flow and hydrological extremes under climate change[J]. Hydrology and Earth System Sciences, 2016, 20(7):3027-3041. doi: 10.5194/hess-20-3027-2016

    [15]

    WANG W, LU H, LEUNG L R, et al. Dam construction in Lancang-Mekong River basin could mitigate future flood risk from warming-induced intensified rainfall[J]. Geophysical Research Letters, 2017, 44(20):10378-10386. doi: 10.1002/2017GL075037

    [16]

    MRC. IWRM-based basin development strategy 2016-2020 for the Lower Mekong basin[R]. Vientiane: MRC, 2016.

    [17]

    HIRSCH P. The shifting regional geopolitics of Mekong dams[J]. Political Geography, 2016, 51:63-74. doi: 10.1016/j.polgeo.2015.12.004

    [18]

    LAURI H, De MOEL H, WARD P J, et al. Future changes in Mekong River hydrology:impact of climate change and reservoir operation on discharge[J]. Hydrology and Earth System Sciences, 2012, 16(12):4603-4619. doi: 10.5194/hess-16-4603-2012

    [19]

    JOHNSTON R, KUMMU M. Water resource models in the Mekong Basin:a review[J]. Water Resources Management, 2012, 26(2):429-455. doi: 10.1007/s11269-011-9925-8

    [20]

    GRUMBINE R E, XU J C. Mekong hydropower development[J]. Science, 2011, 332(6026):178-179. doi: 10.1126/science.1200990

    [21] 侯时雨, 田富强, 倪广恒.澜沧江-湄公河流域产输沙和水库拦沙研究存在问题分析[J].水科学进展, 2020, 31(4):619-628. doi: 10.14042/j.cnki.32.1309.2020.04.016

    HOU S Y, TIAN F Q, NI G H. Review of sediment yield, transportation, and trap in reservoirs in Lancang-Mekong River basin[J]. Advances in Water Science, 2020, 31(4):619-628. (in Chinese) doi: 10.14042/j.cnki.32.1309.2020.04.016

    [22]

    TRUNG L D, DUC N A, NGUYEN L T, et al. Assessing cumulative impacts of the proposed Lower Mekong Basin hydropower cascade on the Mekong River floodplains and delta:overview of integrated modeling methods and results[J]. Journal of Hydrology, 2020, 581:122511. doi: 10.1016/j.jhydrol.2018.01.029

    [23]

    WYATT A B, BAIRD I G. Transboundary impact assessment in the Sesan River basin:the case of the Yali Falls Dam[J]. International Journal of Water Resources Development, 2007, 23(3):427-442. doi: 10.1080/07900620701400443

    [24]

    PIMAN T, COCHRANE T, ARIAS M, et al. Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong Basin[J]. Journal of Water Resources Planning and Management, 2013, 139(6):723-732. doi: 10.1061/(ASCE)WR.1943-5452.0000286

    [25]

    NGO L A, MASIH I, JIANG Y, et al. Impact of reservoir operation and climate change on the hydrological regime of the Sesan and Srepok Rivers in the Lower Mekong Basin[J]. Climatic Change, 2018, 149(1):107-119. doi: 10.1007/s10584-016-1875-y

    [26]

    PIMAN T, LENNAERTS T, SOUTHALACK P. Assessment of hydrological changes in the Lower Mekong Basin from basin:wide development scenarios[J]. Hydrological Processes, 2013, 27(15):2115-2125. doi: 10.1002/hyp.9764

    [27]

    HOANG L P, van VLIET M T H, KUMMU M, et al. The Mekong's future flows under multiple drivers:how climate change, hydropower developments and irrigation expansions drive hydrological changes[J]. Science of the Total Environment, 2019, 649:601-609. doi: 10.1016/j.scitotenv.2018.08.160

    [28]

    RÄSÄNEN T A, KOPONEN J, LAURI H, et al. Downstream hydrological impacts of hydropower development in the Upper Mekong basin[J]. Water Resources Management, 2012, 26(12):3495-3513. doi: 10.1007/s11269-012-0087-0

    [29] 何大明.澜沧江-湄公河水文特征分析[J].云南地理环境研究, 1995, 7(1):58-74. http://www.cqvip.com/QK/91213A/199501/1664924.html

    HE D M. Analysis of hydrological characteristics in Lancang-Mekong River[J]. Yunnan Geographic Environment Research, 1995, 7(1):58-74. (in Chinese) http://www.cqvip.com/QK/91213A/199501/1664924.html

    [30]

    TIAN F Q, HU H P, LEI Z D. Thermodynamic watershed hydrological model:constitutive relationship[J]. Science in China Series E:Technological Sciences, 2008, 51(9):1353-1369. doi: 10.1007/s11431-008-0147-0

    [31]

    LI H Y, SIVAPALAN M, TIAN F Q. Comparative diagnostic analysis of runoff generation processes in Oklahoma DMIP2 basins:the Blue River and the Illinois River[J]. Journal of Hydrology, 2012, 418/419:90-109. doi: 10.1016/j.jhydrol.2010.08.005

    [32]

    TIAN F Q, LI H Y, SIVAPALAN M. Model diagnostic analysis of seasonal switching of runoff generation mechanisms in the Blue River basin, Oklahoma[J]. Journal of Hydrology, 2012, 418/419:136-149. https://www.sciencedirect.com/science/article/abs/pii/S002216941000137X

    [33]

    HE Z H, TIAN F Q, GUPTA H V, et al. Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning[J]. Hydrology and Earth System Sciences, 2015, 19(4):1807-1826. doi: 10.5194/hess-19-1807-2015

    [34]

    XU R, HU H C, TIAN F Q, et al. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River[J]. Global and Planetary Change, 2019, 175:144-159. doi: 10.1016/j.gloplacha.2019.01.012

    [35]

    PFAFSTETTER O. Classification of hydrographic basins: coding methodology[R]. Rio de Janeiro: Departamento Nacional de Obras de Saneamento, 1989: 25-28.

    [36] 李昌文, 徐照明, 游中琼, 等.湄公河干流洪水洪灾特点及防洪对策研究[J].人民长江, 2019, 50(7):35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201907006.htm

    LI C W, XU Z M, YOU Z Q, et al. Flood characteristics and flood control countermeasures in mainstream Mekong River[J]. Yangtze River, 2019, 50(7):35-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201907006.htm

    [37]

    JAVELLE P, OUARDA T B M J, LANG M, et al. Development of regional flood-duration-frequency curves based on the index-flood method[J]. Journal of Hydrology, 2002, 258(1/2/3/4):249-259.

    [38]

    MRC. Annual Mekong flood report 2014[R]. Vientiane: MRC, 2015.

    [39]

    MRC. Overview of the hydrology of the Mekong Basin[R]. Vientiane: MRC, 2005.

    [40]

    WANG W, LI H Y, LEUNG L R, et al. Nonlinear filtering effects of reservoirs on flood frequency curves at the regional scale[J]. Water Resources Research, 2017, 53(10):8277-8292. doi: 10.1002/2017WR020871

    [41]

    LÓPEZ J, FRANCÉS F. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates[J]. Hydrology and Earth System Sciences, 2013, 17(8):3189-3203.

    [42]

    WANG W, LU H, YANG D W, et al. Modelling hydrologic processes in the Mekong River basin using a distributed model driven by satellite precipitation and rain gauge observations[J]. PloS One, 2016, 11(3):e0152229.

    [43] 彭雪婷, 卢麾, 汪伟, 等.基于分布式水文模型的怒江流域气象干旱和水文干旱分析[J].水利水电技术, 2018, 49(8):94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201808012.htm

    PENG X T, LU H, WANG W, et al. Distributed hydrological model-based analysis on meteorological and hydrological drought of Nujiang River basin[J]. Water Resources and Hydropower Engineering, 2018, 49(8):94-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201808012.htm

    [44]

    MRC. Annual Mekong flood report 2008[R]. Vientiane: MRC, 2009.

图(5)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-26
  • 网络出版日期:  2020-09-02
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回