• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国冰冻圈水文过程变化研究新进展

丁永建 张世强 吴锦奎 赵求东 李向应 秦甲

丁永建, 张世强, 吴锦奎, 赵求东, 李向应, 秦甲. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
引用本文: 丁永建, 张世强, 吴锦奎, 赵求东, 李向应, 秦甲. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
DING Yongjian, ZHANG Shiqiang, WU Jinkui, ZHAO Qiudong, LI Xiangying, QIN Jia. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
Citation: DING Yongjian, ZHANG Shiqiang, WU Jinkui, ZHAO Qiudong, LI Xiangying, QIN Jia. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006

中国冰冻圈水文过程变化研究新进展

doi: 10.14042/j.cnki.32.1309.2020.05.006
基金项目: 

国家自然科学基金资助项目 41730751

国家自然科学基金资助项目 41671056

详细信息

Recent progress on studies on cryospheric hydrological processes changes in China

Funds: 

the National Natural Science Foundation of China 41730751

the National Natural Science Foundation of China 41671056

  • 摘要: 冰冻圈显著的变化已经对冰冻圈水文过程产生了一系列影响。本文重点梳理和分析了近20年,尤其是近10年以冰川融水、融雪径流、冻土水文等为主体的中国冰冻圈水文过程变化研究方面取得的新进展:①在冰川融水变化研究方面,对不同尺度的冰川融水开展了全面研究,发现冰川融水呈现全面增加之势;对冰川融水"拐点"是否出现进行了科学辨识,有了基本认识;对冰川融水过程进行了模型模拟,取得显著进展。②在融雪径流变化研究方面,通过对不同流域融雪径流估算,可基本掌握各河流的融雪贡献率;中国融雪径流变化差异较大,增减不一;融雪期变化具有普遍性,突出特点是峰值提前。③在冻土水文研究方面,通过对地表水-活动层壤中流-多年冻土层上水之间关系的研究,揭示了冻土区径流形成的重力和热力耦合机制;多年冻土变化对地表径流的影响已经显现,主要表现在冬季(枯水季)径流增加;已经发现多年冻土退化对径流有直接补给作用,在一些流域补给量可能达到一定量级。
  • 图  1  冰川物质平衡与冰川融水变化的关系

    Figure  1.  Relations of mass balance and changes in glacier meltwater runoff

    图  2  升温速率、冰川规模与冰川融水径流变化的关系

    Figure  2.  Relations of variations in air temperature rise rate and glacier meltwater runoff with different glacier sizes

    图  3  天山阿克苏河上游科其喀尔冰川多水文参量模型模拟实例[44]

    Figure  3.  Simulation of multiple hydrological parameters of Koxkar glacier, upper reach of Aksu River basin in Tianshan Mountain

    图  4  1960—2014年中国一些流域融雪径流补给率、融雪径流变化及融雪期变化[29]

    Figure  4.  Changes in snowmelt supply ration, snowmelt runoff, and snowmelt periods in China during 1960 to 2014

    图  5  多年冻土活动层中水文过程示意

    Figure  5.  Schematic map of hydrological processes in active layer of permafrost

  • [1] GEORG K, MARTIN G, BEN M. Contribution potential of glaciers to water availability in different climate regimes[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(47):20223-20227. http://www.ncbi.nlm.nih.gov/pubmed/21059938
    [2] SORG A, BOLCH T, STOFFEL M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10):725-731. doi:  10.1038/nclimate1592
    [3] QIN D H, DING Y J, XIAO C D, et al. Cryospheric science:research framework and disciplinary system[J]. National Science Review, 2018, 5(2):255-268. doi:  10.1093/nsr/nwx108
    [4] YAO T D, XUE Y, CHEN D, et al. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:multi-disciplinary approach with observation, modeling and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3):423-444. doi:  10.1175/BAMS-D-17-0057.1
    [5] IMMERZEEL W W, LUTZ A F, ANDRADE M, et al. Importance and vulnerability of the world's water towers[J]. Nature, 2019, 577(7790):364-369.
    [6] DING Y J, ZHANG S Q, ZHAO L, et al, Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64:245-253. doi:  10.1016/j.scib.2018.12.028
    [7] 李忠勤.山地冰川物质平衡和动力过程模拟[M].北京:科学出版社, 2019.

    LI Z Q. Mass balance and dynamic process simulation of mountain glacier[M]. Beijing:Science Press, 2019.(in Chinese)
    [8] 韩海东, 邵进荣, 林凤, 等.托木尔型冰川融水对气候变化敏感性的模型分析[J].气候变化研究进展, 2012, 8(5):357-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201205007

    HAN H D, SHAO J R, LIN F, et al. Modeling the sensitivity of meltwater runoff of tuomuer-type glacier to climate changes[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(5):357-363. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz201205007
    [9] SUN M, YAO X, LI Z, et al. Hydrological processes of glacier and snow melting and runoff in the Urumqi River source region, eastern Tianshan Mountains, China[J]. Journal of Geographical Sciences, 2015, 25:149-164. doi:  10.1007/s11442-015-1159-x
    [10] ZHANG F, BAI L, LI L, et al. Sensitivity of runoff to climatic variability in the northern and southern slopes of the Middle Tianshan Mountains, China[J]. Journal of Arid Land, 2016, 8:681-693. doi:  10.1007/s40333-016-0015-x
    [11] 张慧, 李忠勤, 牟建新, 等.近50年新疆天山奎屯河流域冰川变化及其对水资源的影响[J].地理科学, 2017, 37(11):1771-1777. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201711020

    ZHANG H, LI Z Q, MOU J X, et al. Impact of the glacier change on water resources in the Kuytun River basin, Tianshan Mountains during recent 50 years[J]. Scientia Geographica Sinica, 2017, 37(11):1771-1777. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201711020
    [12] GAO H, LI H, DUAN Z, et al. Modelling glacier variation and its impact on water resource in the Urumqi Glacier No. 1 in central Asia[J]. Science of the Total Environment, 2018, 644:1160-1170. doi:  10.1016/j.scitotenv.2018.07.004
    [13] 高鑫, 叶柏生, 张世强, 等. 1961-2006年塔里木河流域冰川融水变化及其对径流的影响[J].中国科学:地球科学, 2010, 40(5):654-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005014

    GAO X, YE B S, ZHANG S Q, et al. Glacier melt water change and impact on Tarim River during 1961-2000[J]. SCIENTIA SINICA Terrae, 2010, 40(5):654-665. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005014
    [14] REN Z, SU F, XU B, et al. A coupled glacier-hydrology model and its application in eastern Pamir[J]. Journal of Geophysical Research Atmospheres, 2018, 123(24):13692-13713. http://www.onacademic.com/detail/journal_1000040905617310_b363.html
    [15] LI Z, SHI X, TANG Q, et al. Partitioning the contributions of glacier melt and precipitation to the 1971-2010 runoff increases in a headwater basin of the Tarim River[J]. Journal of Hydrology, 2020, 583:124579. doi:  10.1016/j.jhydrol.2020.124579
    [16] WU J, DING Y, YANG J, et al. Spatial variation of stable isotopes in different waters during melt season in the Laohugou glacial catchment, Shule River basin[J]. Journal of Mountain Science, 2016, 13(8):1453-1463. doi:  10.1007/s11629-014-3076-3
    [17] 李洪源, 赵求东, 吴锦奎, 等.疏勒河上游径流组分及其变化特征定量模拟[J].冰川冻土, 2019, 41(4):907-917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201904018

    LI H Y, ZHAO Q D, WU J K, et al. Quantitative simulation of the runoff components and its variation characteristics in the upstream of the Shule River[J]. Journal of Glaciology and Geocryology, 2019, 41(4):907-917. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201904018
    [18] 周嘉欣, 丁永建, 吴锦奎, 等.基流分割方法在疏勒河上游流域的应用对比分析[J].冰川冻土, 2019, 41(6):1456-1466. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201906019

    ZHOU J X, DING Y J, WU J K, et al. Applied comparison analysis of base-flow separation methods in upper Shule River basin[J]. Journal of Glaciology and Geocryology, 2019, 41(6):1456-1466. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201906019
    [19] 李忠勤, 李开明, 王林.新疆冰川近期变化及其对水资源的影响研究[J].第四纪研究, 2010, 30(1):96-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001009

    LI Z Q, LI K M, WANG L. Study on recent glacier changes and their impact on water resources in Xijiang, North Western China[J]. Quaternary Sciences, 2010, 30(1):96-106. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201001009
    [20] 姚檀栋, 姚治君.青藏高原冰川退缩对河水径流的影响[J].自然杂志, 2010, 32(1):4-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201001002

    YAO T D, YAO Z J. Impacts of glacial reretreat on runoff on Tibetan Plateau[J]. Chinese Journal of Nature, 2010, 32(1):4-8. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201001002
    [21] 沈永平, 苏宏超, 王国亚.新疆冰川、积雪对气候变化的响应:Ⅰ:水文效应[J].冰川冻土, 2013, 35(3):513-527. http://d.wanfangdata.com.cn/Periodical/bcdt201303001

    SHEN Y P, SU H C, WANG G Y. Responses of glaciers and snow cover to climate change in Xinjiang:I:hydrological effects[J]. Journal of Glaciology and Geocryology, 2013, 35(3):513-527. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bcdt201303001
    [22] DENG H, CHEN Y, LI Y. Glacier and snow variations and their impacts on regional water resources in mountains[J]. Journal of Geographical Science, 2019, 29:84-100. doi:  10.1007/s11442-019-1585-2
    [23] ZHAO Q D, DING Y J, WANG J, et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 2019, 573:60-81. doi:  10.1016/j.jhydrol.2019.03.043
    [24] 叶柏生, 丁永建, 焦克勤, 等.我国寒区径流对气候变暖的响应[J].第四纪研究, 2012, 32(1):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201201014

    YE B S, DING Y J, JIAO K Q, et al. The response of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32(1):103-110. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201201014
    [25] 丁永建, 效存德.冰冻圈变化及其影响研究:综合卷[M].北京:科学出版社, 2020.

    DING Y J, XIAO C D. Cryospheric changes and their impacts:comprehensive volume[M]. Beijing:Science Press, 2020. (in Chinese)
    [26] 刘时银, 姚晓军, 郭万钦, 等.基于第二次冰川编目的中国冰川现状[J].地理学报, 2015, 70(1):3-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201501001

    LIU S Y, YAO X J, GUO W Q, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201501001
    [27] 高鑫, 西部冰川融水变化及其对径流的影响[D].兰州: 中国科学院寒区旱区环境与工程研究所, 2010.

    GAO X.Glacier runoff variation and its influcence on river runoff in western China[D].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2010. (in Chinese)
    [28] ZHANG S Q, GAO X, ZHANG X W. Glacial runoff likely reached peak in the mountainous areas of the Shiyang River basin, China[J]. Journal of Mountain Science, 2015, 12:382-395. doi:  10.1007/s11629-014-3077-2
    [29] 陈仁升, 张世强, 阳勇.等, 冰冻圈变化对中国西部寒区径流的影响[M].北京:科学出版社, 2019.

    CHEN R S, ZHANG S Q, YANG Y, et al. The impact of cryospheric change on runoff of cold regions in Western China[M]. Beijing:Science Press, 2019. (in Chinese)
    [30] ZHAO Q D, ZHANG S Q, DING Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River catchment, central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6):2383-2402. doi:  10.1175/JHM-D-14-0231.1
    [31] ZHANG Z, DENG S, ZHAO Q, et al. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River basin, north-eastern edge of the Tibetan Plateau[J]. Hydrological Processes, 2019, 33:1059-1074. doi:  10.1002/hyp.13384
    [32] ZHANG S Q, GAO X, ZHANG X W, et al. Projection of glacier runoff in Yarkant River basin and Beida River basin, Western China[J]. Hydrological Processes, 2012, 26(18):2773-2781. doi:  10.1002/hyp.8373
    [33] REN Z, SU F, XU B, et al. A coupled glacier-hydrology model and its application in eastern Pamir[J]. Journal of Geophysical Research Atmospheres, 2018, 123(24):13692-13713. http://www.onacademic.com/detail/journal_1000040905617310_b363.html
    [34] LUO Y, ARNOLD J, LIU S Y, et al. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, Northwest China[J]. Journal of Hydrology, 2013, 477:72-85. doi:  10.1016/j.jhydrol.2012.11.005
    [35] GAO B, YANG D, QIN Y, et al. Change in frozen grounds and its effect on regional hydrology in the upper Heihe basin, on the Northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018, 12(2):657-673. doi:  10.5194/tc-12-657-2018
    [36] WANG X Y, XU C Y, YONG B, et al. Understanding the discharge regime of a glacierized alpine catchment in the Tianshan Mountains using an improved HBV-D hydrological model[J]. Global and Planetary Change, 2018, 172:211-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c575b47b205425da6e1e5327ca39bc4c
    [37] DUAN K, YAO T, WANG N, et al. Numerical simulation of Urumqi Glacier No. 1 in the Eastern Tianshan, central Asia from 2005 to 2070[J]. Chinese Science Bulletin, 2012, 57:4505-4509. doi:  10.1007/s11434-012-5469-4
    [38] ZHANG S Q, YE B S, LIU S Y, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China:part Ⅰ:model development[J]. Hydrological Processes, 2012, 26(11):1686-1696. doi:  10.1002/hyp.8286
    [39] GAN R, LUO Y, ZUO Q, et al. Effects of projected climate change on the glacier and runoff generation in the Naryn River basin, central Asia[J]. Journal of Hydrology, 2015, 523:240-251. doi:  10.1016/j.jhydrol.2015.01.057
    [40] JIANG X, WANG N, HE J, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55:2079-2087. doi:  10.1007/s11434-010-3068-9
    [41] YOU Q, FRAEDRICH K, SIELMANN F, et al. Present and projected degree days in China from observation, reanalysis and simulations[J]. Climate Dynamics, 2014, 43, 1449-1462. doi:  10.1007/s00382-013-1960-0
    [42] KARAKOTI I, KESARWANI K, MEHTA M, et al. Extended T-index models for glacier surface melting:a case study from Chorabari Glacier, central Himalaya, India[J]. Theoretical and Applied Climatology, 2016, 126:401-410. doi:  10.1007/s00704-016-1753-6
    [43] KAYASTHA R B, KAYASTHA R. Glacio-hydrological degree-day model (GDM) useful for the Himalayan River basins[C]//DIMRI A, BOOKHAGEN B, STOFFEL M, et al. Himalayan Weather and Climate and Their Impact on the Environment. Cham: Springer, 2020. doi:  10.1007%2F978-3-030-29684-1_19
    [44] HAN H, DING Y, LIU S, et al. Regimes of runoff components on the debris-covered Koxkar glacier in Western China[J]. Journal of Mountain Science, 2015, 12:313-329. doi:  10.1007/s11629-014-3163-5
    [45] LI K, LI Z, GAO W, et al. Recent glacial retreat and its effect on water resources in eastern Xinjiang[J]. Chinese Science Bulletin, 2011, 56:3596-3604. doi:  10.1007/s11434-011-4720-8
    [46] 张廷军, 车涛.北半球积雪及其变化[M].北京:科学出版社, 2019.

    ZHANG T J, CHE T. Snow cover and its changes in Northern hemisphere[M]. Beijing:Science Press, 2019. (in Chinese)
    [47] WANG J, LI S. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China[J]. Science China Earth Science, 2006, 49:881-888. doi:  10.1007/s11430-006-0881-8
    [48] LI B, CHEN Y, CHEN Z, et al. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China[J]. Journal of Geographical Sciences, 2013, 23:17-30. doi:  10.1007/s11442-013-0990-1
    [49] JIN H, JU Q, YU Z, et al. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River basin, Southeastern Qinghai-Tibetan Plateau, China[J]. Natural Hazards, 2019, 99:931-950. doi:  10.1007/s11069-019-03784-0
    [50] ZHANG W, KANG S, SHEN Y, et al. Response of snow hydrological processes to a changing climate during 1961 to 2016 in the headwater of Irtysh River basin, Chinese Altai Mountains[J]. Journal of Mountain Science, 2017, 14:2295-2310. doi:  10.1007/s11629-017-4556-z
    [51] QIU L, YOU J, QIAO F, et al. Simulation of snowmelt runoff in ungauged basins based on MODIS:a case study in the Lhasa River basin[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28:1577-1585. doi:  10.1007/s00477-013-0837-4
    [52] HUANG J B, WEN J W, WANG B, et al. Numerical analysis of the combined rainfall-runoff process and snowmelt for the Alun River basin, Heilongjiang, China[J]. Environmental Earth Sciences, 2015, 74:6929-6941. doi:  10.1007/s12665-015-4694-y
    [53] 胡汝骥.中国积雪与雪灾防治[M].北京:中国环境科学出版社, 2013.

    HU R J. Snow cover and snow hazard prevention in China[M]. Beijing:China Environmental Science Press, 2013. (in Chinese)).
    [54] SUN J, WANG X, CAO Y, et al. Analysis of spatial and temporal evolution of hydrological and meteorological elements in Nenjiang River basin, China[J]. Theoretical and Applied Climatology, 2019, 137:941-961. doi:  10.1007/s00704-018-2641-z
    [55] LI F, ZHANG G, XU Y J. Spatiotemporal variability of climate and streamflow in the Songhua River basin, Northeast China[J]. Journal of Hydrology, 2014, 514:53-64. doi:  10.1016/j.jhydrol.2014.04.010
    [56] 朱景亮.松花江流域融雪产流特征及其影响因素研究[D].北京: 中国科学院研究生院, 2015. http://d.wanfangdata.com.cn/thesis/Y2962530

    ZHU J L. Snowmelt runoff characteristics and its influencing factors of Songhua River basin[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2015. (in Chinese) http://d.wanfangdata.com.cn/thesis/Y2962530
    [57] YE B S, DING Y J, KANG E S, et al. Response of the snowmelt and glacier runoff to the climate warming-up in the last 40 years in Xinjiang Autonomous Region, China[J]. Science China Earth Science, 1999, 42:44-51. doi:  10.1007/BF02878852
    [58] ZHANG G, XIE H, YAO T, et al. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM)[J]. Journal of Hydrology, 2014, 519:976-987. doi:  10.1016/j.jhydrol.2014.08.022
    [59] WANG R, YAO Z, LIU Z, et al. Snow cover variability and snowmelt in a high-altitude ungauged catchment[J]. Hydrological Processes, 2015, 29(17):3665-3676. doi:  10.1002/hyp.10472
    [60] KHADKA D, BABEL M S, SHRESTHA S, et al. Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region[J]. Journal of Hydrology, 2014, 511(4):49-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a028fc3a7ffdd763b970b2febc85d09d
    [61] STEWART I T. Changes in snowpack and snowmelt runoff for key mountain regions[J]. Hydrological Processes, 2009, 23(1):78-94. doi:  10.1002/hyp.7128
    [62] TEDESCO M, MONAGHAN A J. An updated Antarctic melt record through 2009 and its linkages to high-latitude and tropical climate variability[J]. Geophysical Research Letters, 2009, 36(18):120-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54356a6e922f78bd7ab395139dc37bcc
    [63] 吕爱锋, 贾绍凤, 燕华云, 等.三江源地区融雪径流时间变化特征与趋势分析[J].资源科学, 2009(10):76-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200910011

    LYU A F, JIA S F, YAN H Y, et al. Temporal variations and trend analysis of the snowmelt runoff timing across the source regions of the Yangtze River, Yellow River and Lancang River[J]. Resources Science, 2009(10):76-81. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200910011
    [64] SHEN Y J, SHEN Y J, FINK M, et al. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains[J]. Journal of Hydrology, 2018, 557:173-181. doi:  10.1016/j.jhydrol.2017.12.035
    [65] 沈永平, 王国亚, 苏宏超, 等.新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J].冰川冻土, 2007, 29(6):845-854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200706001

    SHEN Y P, WANG G Y, SU H C, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan River basin with snow-dominated of the Altay Mountains region, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29(6):845-854. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200706001
    [66] CHANG J, WANG G, LI C, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Science China Earth Science, 2015, 58:727-738. doi:  10.1007/s11430-014-5009-y
    [67] YANG Y, WU Q, HOU Y, et al. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique[J]. Science of the Total Environment, 2017, 605/606:199-210. doi:  10.1016/j.scitotenv.2017.06.213
    [68] 曹伟, 盛煜, 吴吉春, 等.黄河源区多年冻土活动层土壤水文过程季节变异分析[J].水科学进展, 2018, 29(1):1-10. doi:  10.14042/j.cnki.32.1309.2018.01.001

    CAO W, SHENG Y, WU J C, et al. Seasonal variation of soil hydrological process of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29(1):1-10. (in Chinese) doi:  10.14042/j.cnki.32.1309.2018.01.001
    [69] WANG G X, MAO T X, CHANG J, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550:307-317. doi:  10.1016/j.jhydrol.2017.05.020
    [70] WANG W, WU T H, ZHAO L, et al. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data[J]. Journal of Hydrology, 2018, 560:220-229. doi:  10.1016/j.jhydrol.2018.03.032
    [71] 赵林, 胡国杰, 邹德富, 等.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊, 2019, 34(11):1233-1246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201911006

    ZHAO L, HU G J, ZOU D F, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1233-1246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201911006
    [72] 张艳林, 常晓丽, 梁继, 等.高寒山区冻土对水文过程的影响研究:以黑河上游八宝河为例[J].冰川冻土, 2016, 38(5):1362-1372. http://d.wanfangdata.com.cn/Periodical/bcdt201605022

    ZHANG Y L, CHANG X L, LIANG J, et al. Influence of frozen ground on hydrological processes in alpine regions:a case study in an upper reach of the Heihe River[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1362-1372. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bcdt201605022
    [73] 李太兵, 王根绪, 胡宏昌, 等.长江源多年冻土区典型小流域水文过程特征研究[J].冰川冻土, 2009, 31(1):82-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200901012

    LI T B, WANG G X, HU H C, et al. Hydrological process in a typical small permafrost watershed at the headwaters of Yangtze River[J]. Journal of Glaciology and Geocryology, 2009, 31(1):82-88. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt200901012
    [74] BAI W, WANG G, LIU G. Effects of elevated air temperatures on soil thermal and hydrologic processes in the active layer in an alpine meadow ecosystem of the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2012, 9:243-255. doi:  10.1007/s11629-012-2117-z
    [75] ZHANG Z, WU Q, GAO S, et al. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region[J]. Environmental Earth Sciences, 2017, 76:194. doi:  10.1007/s12665-017-6518-8
    [76] HU H, WANG G, WANG Y, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54:1225-1233. http://www.cqvip.com/QK/86894X/20097/29817638.html
    [77] HU G, ZHAO L, LI R, et al. Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25:713-727. doi:  10.1007/s11769-015-0733-6
    [78] DU X, FANG M, LYU H, et al. Effect of snowmelt infiltration on groundwater recharge in a seasonal soil frost area:a case study in Northeast China[J]. Environmental Monitoring and Assessment, 2019, 191:151. doi:  10.1007/s10661-019-7285-7
    [79] LI Z, FENG Q, WANG Q, et al. Contribution from frozen soil meltwater to runoff in an in-land river basin under water scarcity by isotopic tracing in Northwestern China[J]. Global and Planetary Change, 2016, 136:41-51. doi:  10.1016/j.gloplacha.2015.12.002
    [80] MA Q, JIN H J, BENSE V F, et al. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China[J]. Advances in Climate Change Research, 2020, 10(4):225-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhbhyjjz-e201904004
    [81] WANG T, YANG H, YANG D, et al. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J]. Journal of Hydrology, 2018, 558:301-313. doi:  10.1016/j.jhydrol.2018.01.050
    [82] WAN C, LI K, SHEN S, et al. Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322:561-578. doi:  10.1007/s10967-019-06720-5
    [83] JIANG J. Quantifying the influence of groundwater discharge induced by permafrost degradation on lake water budget in Qinghai-Tibet Plateau:using 222Rn and stable isotopes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323:1125-1134. doi:  10.1007/s10967-020-07025-8
    [84] SUN A L, YU Z B, ZHOU J. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia[J]. Science of The Total Environment, 2020.[doi: 10.1016/j.scitotenv.2019.135632]
    [85] WANG S, SHENG Y, LI J, et al. An estimation of ground ice volumes in permafrost layers in Northeastern Qinghai-Tibet Plateau, China[J]. Chinese Geographical Science, 2018, 28:61-73. doi:  10.1007/s11769-018-0932-z
    [86] LUO J, NIU F, LIN Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60:556-564. doi:  10.1007/s11434-015-0730-2
    [87] YANG Y, WU Q, YUN H, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes[J]. Global and Planetary Change, 2016, 140:1-8. doi:  10.1016/j.gloplacha.2016.03.006
    [88] PAN X, YU Q, YOU Y, et al. Contribution of supra-permafrost discharge to thermokarst lake water balances on the Northeastern Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2017, 555:621-630. doi:  10.1016/j.jhydrol.2017.10.046
    [89] GAO T, ZHANG T, CAO L, et al. Reduced winter runoff in a mountainous permafrost region in the Northern Tibetan Plateau[J]. Cold Regions Science and Technology, 2016, 126:36-43. doi:  10.1016/j.coldregions.2016.03.007
    [90] LIU J, HAYAKAWA N, LU M, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science and Technology, 2003, 37:15-24. doi:  10.1016/S0165-232X(03)00012-0
    [91] 陆胤昊, 叶柏生, 李翀.近50a来我国东北多年冻土区南缘海拉尔河流域径流变化特征分析[J].冰川冻土, 2014, 36(2):394-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201402019

    LU Y H, YE B S, LI C. Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958-2008[J]. Journal of Glaciology and Geocryology, 2014, 36(2):394-402. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdt201402019
    [92] NIU L, YE B, LI J. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Science, 2011, 54:615-624. doi:  10.1007/s11430-010-4073-1
    [93] QIN J, DING Y J, HAN T D. Identification of the factors influencing the baseflow in the permafrost region of the Northeastern Qinghai-Tibet Plateau[J]. Water, 2017, 9(9):1-16. http://www.researchgate.net/publication/319601274_Identification_of_the_Factors_Influencing_the_Baseflow_in_the_Permafrost_Region_of_the_Northeastern_Qinghai-Tibet_Plateau
    [94] WANG X Q, CHEN R S, HAN C T, et al. Changes in river discharge in typical mountain permafrost catchments, Northwestern China[J]. Quaternary International, 2018, 519:32-41. http://www.sciencedirect.com/science/article/pii/S104061821830819X
    [95] LAN C, ZHANG Y, BOHN T J, et al. Frozen soil degradation and its effects on surface hydrology in the Northern Tibetan Plateau[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(16):8276-8298. doi:  10.1002/2015JD023193
    [96] SONG C, WANG G, MAO T, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China Earth Science, 2020, 63:292-302. doi:  10.1007/s11430-018-9383-6
    [97] 张菲, 刘景时, 巩同梁.喜马拉雅山北坡典型高山冻土区冬季径流过程[J].地球科学进展, 2006, 21(12):1321-1338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200612015

    ZHANG F, LIU J S, GONG T L. Winter runoff in a typical alpine permafrost region, Tibet-Himalayas[J]. Advances in Earth Science, 2006, 21(12):1321-1338(in Chinese)). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200612015
    [98] QUINTON W L, BALTZER J L. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada)[J]. Hydrogeology Journal, 2012, 21(1):201-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbffb48ac19da1fd9dcec5046960494d
    [99] WANG L, ZHOU J, JIA Q, et al. Development of a land surface model with coupled snow and frozen soil physics[J]. Water Resources Research, 2017, 53(6):5085-5103. doi:  10.1002/2017WR020451
  • [1] 刘吉平, 金晶, 李晟铭, 宋开山.  1995-2015年全球不同气候带典型冰川补给型湖泊动态变化 . 水科学进展, 2021, 32(1): 1-9. doi: 10.14042/j.cnki.32.1309.2021.01.001
    [2] 李昱, 席佳, 张弛, 王国庆, 黄强, 关铁生, 卢吉, 周惠成.  气候变化对澜湄流域气象水文干旱时空特性的影响 . 水科学进展, 2021, 32(4): 508-519. doi: 10.14042/j.cnki.32.1309.2021.04.003
    [3] 顾磊, 陈杰, 尹家波, 郭强, 王惠民, 周建中.  气候变化下中国主要流域气象水文干旱潜在风险传播 . 水科学进展, 2021, 32(3): 321-333. doi: 10.14042/j.cnki.32.1309.2021.03.001
    [4] 王子龙, 何馨, 姜秋香, 刘莹, 孙建.  气候变化下东北中等流域冬季径流模拟和预测 . 水科学进展, 2020, 31(4): 575-582. doi: 10.14042/j.cnki.32.1309.2020.04.011
    [5] 任立良, 沈鸿仁, 袁飞, 赵崇旭, 杨肖丽, 郑培丽.  变化环境下渭河流域水文干旱演变特征剖析 . 水科学进展, 2016, 27(4): 492-500. doi: 10.14042/j.cnki.32.1309.2016.04.002
    [6] 贺瑞敏, 张建云, 鲍振鑫, 严小林, 王国庆, 刘翠善.  海河流域河川径流对气候变化的响应机理 . 水科学进展, 2015, 26(1): 1-9. doi: 10.14042/j.cnki.32.1309.2015.01.001
    [7] 曾思栋, 夏军, 杜鸿, 张利平, 陈向东, 王任超, ADITYA Sood.  气候变化、土地利用/覆被变化及CO2浓度升高对滦河流域径流的影响 . 水科学进展, 2014, 25(1): 10-20.
    [8] 董志文, 秦大河, 陈记祖, 秦翔, 张瑞波, 任贾文.  粉尘颗粒物对祁连山老虎沟冰川融水理化性质的影响 . 水科学进展, 2014, 25(2): 207-216.
    [9] 李兰海, 尚明, 张敏生, AHMAD Sajjad, 黄粤.  APHRODITE降水数据驱动的融雪径流模拟 . 水科学进展, 2014, 25(1): 53-59.
    [10] 范昊明, 武敏, 周丽丽, 贾燕锋.  融雪侵蚀研究进展 . 水科学进展, 2013, 24(1): 146-152.
    [11] 董磊华, 熊立华, 于坤霞, 李 帅.  气候变化与人类活动对水文影响的研究进展 . 水科学进展, 2012, 23(2): 278-285. doi: CNKI: 32.1309.P.20120224.2005.020
    [12] 鞠琴, 郝振纯, 余钟波, 徐海卿, 江微娟, 郝洁.  IPCC AR4气候情景下长江流域径流预测 . 水科学进展, 2011, 22(4): 462-469.
    [13] 董李勤, 章光新.  全球气候变化对湿地生态水文的影响研究综述 . 水科学进展, 2011, 22(3): 429-436.
    [14] 杨涛, 陆桂华, 李会会, 何海, 王晓燕.  气候变化下水文极端事件变化预测研究进展 . 水科学进展, 2011, 22(2): 279-286.
    [15] 王国庆, 张建云, 刘九夫, 金君良, 刘翠善.  中国不同气候区河川径流对气候变化的敏感性 . 水科学进展, 2011, 22(3): 307-314.
    [16] 高鑫, 张世强, 叶柏生, 高红凯.  河西内陆河流域冰川融水近期变化 . 水科学进展, 2011, 22(3): 344-350.
    [17] 阳勇, 陈仁升, 吉喜斌, 卿文武, 刘俊峰, 韩春坛.  黑河高山草甸冻土带水热传输过程 . 水科学进展, 2010, 21(1): 30-35.
    [18] 姚允龙, 吕宪国, 王蕾, 于洪贤.  气候变化对挠力河径流量影响的定量分析 . 水科学进展, 2010, 21(6): 765-770.
    [19] 何新林, 郭生练.  气候变化对新疆玛纳斯河流域水文水资源的影响 . 水科学进展, 1998, 9(1): 77-83.
    [20] 刘春蓁.  气候变化对我国水文水资源的可能影响 . 水科学进展, 1997, 8(3): 220-225.
  • 加载中
图(5)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  23
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 网络出版日期:  2020-06-12
  • 刊出日期:  2020-09-30

中国冰冻圈水文过程变化研究新进展

doi: 10.14042/j.cnki.32.1309.2020.05.006
    基金项目:

    国家自然科学基金资助项目 41730751

    国家自然科学基金资助项目 41671056

    通讯作者: 张世强, E-mail:zhangsq@lzb.ac.cn
  • 中图分类号: P343.6

摘要: 冰冻圈显著的变化已经对冰冻圈水文过程产生了一系列影响。本文重点梳理和分析了近20年,尤其是近10年以冰川融水、融雪径流、冻土水文等为主体的中国冰冻圈水文过程变化研究方面取得的新进展:①在冰川融水变化研究方面,对不同尺度的冰川融水开展了全面研究,发现冰川融水呈现全面增加之势;对冰川融水"拐点"是否出现进行了科学辨识,有了基本认识;对冰川融水过程进行了模型模拟,取得显著进展。②在融雪径流变化研究方面,通过对不同流域融雪径流估算,可基本掌握各河流的融雪贡献率;中国融雪径流变化差异较大,增减不一;融雪期变化具有普遍性,突出特点是峰值提前。③在冻土水文研究方面,通过对地表水-活动层壤中流-多年冻土层上水之间关系的研究,揭示了冻土区径流形成的重力和热力耦合机制;多年冻土变化对地表径流的影响已经显现,主要表现在冬季(枯水季)径流增加;已经发现多年冻土退化对径流有直接补给作用,在一些流域补给量可能达到一定量级。

English Abstract

丁永建, 张世强, 吴锦奎, 赵求东, 李向应, 秦甲. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
引用本文: 丁永建, 张世强, 吴锦奎, 赵求东, 李向应, 秦甲. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
DING Yongjian, ZHANG Shiqiang, WU Jinkui, ZHAO Qiudong, LI Xiangying, QIN Jia. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
Citation: DING Yongjian, ZHANG Shiqiang, WU Jinkui, ZHAO Qiudong, LI Xiangying, QIN Jia. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31(5): 690-702. doi: 10.14042/j.cnki.32.1309.2020.05.006
  • 随着气候变化影响的不断加剧, 最近几十年、尤其是最近10年, 从北极到青藏高原、从安第斯山到阿尔卑斯、从内陆河流域到西伯利亚、从高纬度海洋到全球海平面变化, 冰冻圈变化的水文影响已经不断显现, 与冰冻圈相关的水文问题已经成为全球变化中的热点问题; 同时, 从学科系统性的视角来看, 冰冻圈与水圈及其他圈层相互作用已经成为气候系统乃至地球系统中影响巨大、十分活跃的重要地表过程[1-5]。在这些研究中, 以冰川融水、融雪径流、冻土水文和高纬度淡水平衡等为主要研究领域, 以观测和模拟方法、水文过程、径流变化、流域作用和区域影响等为主要研究问题。

    随着气候变暖累积效应的持续, 全球冰冻圈已经呈现加速变化之势[6], 伴随冰冻圈的快速变化, 与之相关的冰川融水、融雪径流、冻土水文和高纬度海洋-冰冻圈之间的淡水平衡等水文过程均发生着显著变化, 这些变化对水资源及社会可持续的影响受到广泛关注。这是目前冰冻圈水文研究的宏观背景, 也是国内外冰冻圈水文研究的总态势。

    中国冰冻圈主要以冰川、积雪和冻土三大要素为主体, 因此, 冰川融水、融雪径流、冻土水文是冰冻圈主要研究对象。本文重点分析了近20年, 尤其是近10年以冰川融水、融雪径流、冻土水文等为主体的中国冰冻圈水文过程变化研究方面取得的新进展。

    • 在气候变暖影响下, 中国冰川退缩整体呈现加速之势[7], 冰川内部不稳定加剧[6], 冰川消融在进一步加剧。过去20年, 中国冰川融水研究从针对不同类型的单条冰川观测试验数据的冰川融水变化特征、机理研究[8-12]到基于遥感数据和模型模拟的流域尺度融水径流过程研究[13-15], 从流域冰川融水径流的辨识与分割[16-18]到区域性的冰川融水变化估算[19-23]等, 冰川融水的研究已经涉及到形成、机理、过程、变化等各方面研究内容, 可以说针对冰川融水的研究已经全面开展。

    • 综合已有研究结果[7, 24-25], 可以得出中国冰川融水变化的整体认识:随着气候变暖的持续影响, 中国冰川融水整体上呈现增加趋势(图 1), 增加幅度与冰川规模大小和局地升温强度有关。1960年以来, 实测或根据部分实测资料恢复的几条冰川物质平衡显示, 持续的负平衡是普遍现象, 且海洋性冰川物质平衡变化显著大于大陆性冰川(图 1(a)), 导致不同流域冰川融水增加速率不同(图 1(c))。冰川融水的增加与物质的损失相对应, 呈现出阶段性加速增加特点。若以观测较完整的乌鲁木齐河源1号冰川(简称1号冰川)物质平衡为参照(图 1(b)), 可以看到冰川融水整体上1960年以来持续增加, 1980左右出现第1次加速, 到2000年左右随着冰川内部不稳定性的增加[6], 出现了再次加速增长过程(图 1(c)), 与物质平衡的变化基本上一致。与20世纪60年代相比较, 21世纪10年代全国冰川融水已经增加了54%, 据此推算, 在1960—2020年的60年间, 中国冰川储量减少了约800 km3, 占到2006年时冰川体积[26]的20%。

      图  1  冰川物质平衡与冰川融水变化的关系

      Figure 1.  Relations of mass balance and changes in glacier meltwater runoff

      在流域尺度上, 众多面积大小不一的冰川分布其中, 对气候的响应程度各异。因此, 在流域尺度上是否出现冰川融水的峰值, 情况更加复杂(图 2)。目前已有的结果可以得出这样的基本认识:冰川覆盖率低、以小冰川为主的流域(流域平均冰川面积小于1 km2, 且最大的冰川面积 < 2 km2), 其冰川融水“先增后减”的拐点已经出现(图 2(c)), 如河西走廊东端的石羊河流域[28]、天山北坡的玛纳斯河和呼图壁河流域以及青藏高原的怒江源、黄河源和澜沧江源[29];冰川规模较大的流域(流域平均冰川面积超过2 km2、且流域内有一定数量的面积超过5 km2以上的大型冰川), 冰川融水拐点出现较晚或在本世纪末不出现, 如阿克苏河1960年以来山区径流增加了22%, 其中约2/3以上来源于冰川融水增加的贡献, 未来在各种情景下均显示为增加的趋势(图 2(a))[29-30];冰川规模介于二者之间的流域, 冰川融水在未来10~20 a会出现冰川融水拐点, 如祁连山疏勒河[31]以及青藏高原的长江源等[29]

      图  2  升温速率、冰川规模与冰川融水径流变化的关系

      Figure 2.  Relations of variations in air temperature rise rate and glacier meltwater runoff with different glacier sizes

    • 单条冰川的融水观测试验是校验模型的基础。最近20年, 冰川水文模拟全面开展, 在空间上从单条冰川到流域、区域[23, 33-36];时间上从中国冰川监测早期的20世纪60年代起, 到未来几十年到百年[23, 37-39]。在水文过程模拟方面, 核心是针对冰川消融量的计算, 目前应用最广泛的是度日因子方法, 通过增加辐射参数, 提高了冰川融水的计算精度, 也增加了度日因子的物理意义[38, 40-43]。在模型计算方面的一个重要进展是, 采取以每条冰川的空间分布为计算单元, 避免了传统格网化分布不能将模拟的冰川变化与遥感获得的多期冰川变化逐条对比, 难以了解每条冰川融水径流特征的弊端, 对准确理解整个流域内不同大小冰川在流域径流变化中的贡献具有重要作用[23, 30]

      另外值得一提的是针对复杂冰川下垫面研发的冰面水文模型[44], 这一模型依据大量冰面观测数据, 开发出基于物理基础并考虑表碛、冰崖、冰面湖等复杂过程的冰川径流模型, 可以对冰川表面冰崖、埋藏冰、祼冰、降雨、融雪、基流等进行模拟分析(图 3)。

      图  3  天山阿克苏河上游科其喀尔冰川多水文参量模型模拟实例[44]

      Figure 3.  Simulation of multiple hydrological parameters of Koxkar glacier, upper reach of Aksu River basin in Tianshan Mountain

    • 通过大量研究, 对冰川融水是否出现峰值(拐点)、峰值大小及何时出现峰值等这些广泛关注的问题有了基本认识。对于单条冰川而言, 冰川融水可能会出现拐点, 而且拐点是否出现和出现的时间与升温速率和冰川面积大小有关[7, 24-25, 45]。升温速率对冰川融水拐点的影响很大, 相同大小的冰川, 升温速率不同, 融水出现拐点的时间不一, 甚至不会出现显著的拐点。以1号冰川为例, 若采用全球气候模式输出的气候数据模拟, 1号冰川融水径流显示出平稳减少直至冰川消亡时突然减少, 而利用1号冰川附近大气沟气象站升温速率模拟结果则在2030年左右出现拐点(图 2(b)), 原因在于大西沟的升温速率远高于全球平均值[7]

    • 中国大部陆地处于中、低纬度, 相对而言积雪范围、深度和时间上均较偏弱小[46]。积雪主要分布区为纬度较高的东北北部、新疆阿尔泰地区和海拔较高的青藏高原东北部及各大山系。尽管如此, 积雪对中国北方广大地区而言, 仍是十分重要的水资源, 其对河流春季径流补给、植被生态复苏、缓解春旱、土壤保墒及水土保持等均起着十分重要的作用。中国融雪径流研究相对较晚[47], 大量的工作主要出现在最近十几年, 取得的主要进展可总结如下。

    • 中国融雪径流对河流的补给率差异较大(图 4)。在三大积雪区, 大多数河流融雪径流补给率为15%~25%[29, 48-49], 阿尔泰地区径流补给率为40%~60%[21, 50], 最大可超过70%, 融雪径流多发生在3—5月。总体上, 受西风影响大的流域, 融雪径流补给比例较高, 如额尔齐斯河, 而受季风影响的地区, 由于降水集中在夏季, 冬季降水偏少, 融雪径流补给就少。如拉萨河融雪径流补给率为3%~6%[51], 黑龙江阿伦河融雪径流比例只有1.2%左右[52]。不同地区, 融雪径流集中期也有差别, 如西藏东南的尼洋河, 融雪径流主要集中在5月, 融雪径流比例为15%左右[49], 而长江源区融雪径流比例在20%左右, 主要发生在4—9月, 其中5—7月融雪径流比重较大, 黄河源区融雪径流主要发生在3—6月, 其中5—6月融雪径流比重较大[29]。根据融雪补给方式的不同, 融雪补给河流的类型也有所不同[53]

      图  4  1960—2014年中国一些流域融雪径流补给率、融雪径流变化及融雪期变化[29]

      Figure 4.  Changes in snowmelt supply ration, snowmelt runoff, and snowmelt periods in China during 1960 to 2014

    • 中国融雪径流变化地区差异较大。东北地区, 融雪径流总体呈现下降趋势(图 4)。流域上游融雪径流似呈现增加、下游呈现显著减少趋势。1960年以来, 长白山区融雪增加明显[30], 嫩江流域尽管降水变化不大, 但冬季降水显著增加[54], 导致1990年后流域主要水文站冬季径流均显著增加[55]。1956年以来, 松花江流域6个水文站多年平均径流量以及融雪径流量均呈现减小的趋势, 其中哈尔滨、佳木斯站融雪期径流量分别减少0.5亿m3/a和0.7亿m3/a[56]。随着融雪径流补给率减少, 越向下游径流变化幅度越大[54-56]

      西北地区, 在20世纪八九十年代, 融雪径流普遍增加, 平均增幅达10%, 积雪较大的山区增加幅度可达20%[57]。1961年以来, 天山南坡融雪径流增加明显[29], 额尔齐斯河积雪开始日推迟13 d, 结束日提前17 d, 积雪期缩短1个月。4—5月径流比例增加, 6—7月径流比例减少[50]。在祁连山区, 北坡的疏勒河和黑河1960—2014年融雪径流略有增加[30], 南坡的布哈河流域, 融雪径流变化不明显, 其对青海湖湖水位变化影响不大[58]。青藏高原、长江和黄河源区1960年以来, 融雪径流量变化不大[29]。利用多模式集合的气候情景数据, 对疏勒河、黑河、黄河源和长江源的预估结果表明[29], 处于海拔较低的黑河和黄河源在未来气温升高、降雨增加的条件下, 融雪径流整体呈下降趋势, 但黑河流域的减少趋势并不明显;长江源平均海拔在4 800 m, 由于升温造成的降雪没有明显减少, 加之积雪提前消融, 造成融雪径流增加;疏勒河平均海拔在4 000 m左右, 尽管升温造成降雨比重增加, 但由于积雪提前消融, 积雪升华损失减小, 且3—5月融雪径流系数较高, 弥补了降雪减少的损失, 融雪径流显示出略有增加的趋势。新疆北部的提孜那甫河流域, 山区海拔较高, 预估到2090年, 融雪径流增加16%~24%[59]。兴都库什-喜马拉雅(HKH)的未来预估也表明, 流域融雪径流未来将以5.6 mm/a速率增加, 随着未来流域融雪径流的增加, 将会对流域水资源规划、管理和持续利用产生重要影响[60]

      总之, 中国融雪径流自1960年到2014年, 东北地区以减少为主, 西北地区尤其是新疆天山和阿尔泰地区以增加为主, 青藏高原有增有减(图 4)。与北半球绝大多数地区融雪径流变化类似, 极高纬度、高海拔地区, 融雪径流呈现增加趋势。从预估的结果来看, 降水增加、气温升高的背景下, 黄河源融雪径流呈显著下降趋势, 而黑河略有减少、疏勒河略有增加趋势, 长江源融雪径流呈现明显增加趋势[29]

    • 随着全球变暖, 融雪期明显提前, 消融早期的融雪径流明显增加。同时, 由于大量积雪提前融化, 后期积雪减少, 从而改变了流域融雪径流年内分配。对于以积雪融水为主要补给的河流, 融雪径流的变化使整个流域径流年内分配发生较大改变。

      与前述的融雪径流变化特征差异较大不同, 融雪径流时间的提前具有全球普遍性。1948—2002年, 北美融雪开始的时间提前, 融雪径流的集中期明显向前推移[61]。1979年以来, 欧亚大陆和泛北极区积雪融雪期明显减短, 并且融雪期开始时间每10 a提前约5 d, 融雪期结束时间每10 a提前约10 d[62]。1957年以来, 青藏高原三江源融雪径流时间都有提前的趋势, 澜沧江源的香达站提前10 d左右, 长江源的沱沱河提前4 d左右[63], 长江源区融雪开始时间提前(0.9~3.0) d/10 a, 融雪的结束时间也提前了(0.6~2.3) d/10 a [59]。气温上升没有影响融雪径流量, 而是导致中天山融雪径流峰值提前[45], 天山南坡融雪期提前20 d左右, 天山南坡自20世纪80年代中期以来, 融雪径流提前[64];新疆北部的阿尔泰山克兰河, 最大径流月由6月提前到5月, 相应最大月径流也增加了15%[50, 65]。祁连山北坡融雪径流提前10 d左右[48]。可见, 尽管变化程度不同, 中国过去几十年融雪径流期提前, 整个融雪期向前推移, 峰值提前等呈现出普遍性特点(图 4)。

    • 冻土与径流关系较为复杂, 冻土的隔水效应、多年冻土变化导致的活动层土壤储蓄-调节作用以及多年冻土融化释放出来的水量对径流的补给作用等, 均可能影响水文过程, 由于直接观测的困难, 目前同位素示踪、统计分析和模型模拟是主要方法。中国冻土水文研究在过去几十年, 尤其是最近十几年取得一些成果, 主要表现在以下方面。

    • 在多年冻土区, 对径流影响最大的是多年冻土活动层, 活动层的冻融过程不仅影响地表径流产汇流, 也影响活动层内垂直和水平方向的壤中流, 最终影响多年冻土顶板上地下水的补给和径流过程(图 5)。多年冻土顶板附近地下水一部分来自于地表降水下渗补给[66-68], 另一部分则来自于多年冻土融化释放出的水[69-71]

      图  5  多年冻土活动层中水文过程示意

      Figure 5.  Schematic map of hydrological processes in active layer of permafrost

      冻土的水文效应主要表现在三方面:一是活动层冻融过程对地表径流的影响;二是冻融过程中活动层内水分相变与迁移过程;三是活动层内地下水与多年冻土之间的相互作用。模拟显示[72], 考虑冻土时, 流域产流以壤中流为主, 径流对降雨或融雪的响应速度较快, 径流过程线变化较为剧烈, 径流系数较高;在不考虑冻土时, 土壤下渗能力强, 地下水补给是考虑冻土时的3倍, 流域产流方式以基流为主, 径流对降雨或融雪的响应速度减缓, 径流过程线较为平滑。活动层对地表径流的影响突出表现在活动层融化发生的春季和冻结发生的秋季。春季地表积雪或降水以蓄满产流方式占春季总径流的66%~85%, 活动层内壤中流占14%~34%, 土壤温度影响着活动层变化, 进而控制产流方式、径流组成和径流系数。青藏高原小流域春汛期主要是65 cm以上的土壤温度和水分起主导作用[73]

      当活动层融化深度较大时, 土壤下渗能力增强, 此时地表径流则转化以超渗产流为主, 青藏高原小流域夏季平水期40 cm以上土壤水分与径流是负相关, 深层地温和土壤水分起主导作用, 夏汛期气温、降水起主导作用[73]。进入秋季随着冻结锋面上升, 多年冻土层上水地下径流随着活动层的冻结迅速减小, 同时地下径流与总径流比例及地表径流系数增加, 产流以蓄满产流为主[69, 74]。上述研究表明, 冻土区径流的产流方式多种形式并存, 且受温度因素控制。冻土区水文过程不仅要考虑水量平衡, 还要考虑能量平衡。

      活动层内的水分运移过程更加复杂, 它不仅与土壤岩性及组成特性有关, 还与地表植被类型和覆盖率有关, 也与土壤有机质含量有关。在多年冻土区, 土壤物理特性是控制土壤水热状况的重要因素[75]。随着植被盖度的减少, 多年冻土活动层0.2~0.6 m深度内土壤含水量减少, 而在0.6~0.8 m深度内含水量增加;而季节冻土整个剖面(0.2~1.0 m)土壤含水量随深度增加。也就是说, 植被盖度变化改变土壤水热过程, 但多年冻土与季节冻土有所不同[76]。土壤有机质具有隔热、阻水效应, 因此, 活动层内有机质含量不仅对活动层加深具有保护作用, 对水分运移也有较大影响[77]

      冻土层上水与土壤水热之间存在着相互影响、相互作用的关系[68, 78]。活动层内壤中流向下运移, 到达多年冻土顶板形成地下水的聚集, 地下水不仅通过重力作用形成地下径流, 而且与多年冻土也进行水量交换, 部分地下水冻结成为多年冻土的一部分[67, 71]。多年冻土顶板附近地下冰中活动层水占59%~87%, 冻土水占13%~41%, 表明活动层对地下冰贡献较大, 且高寒草甸贡献率(59%~69%)小于高寒草原(70%~87%)[70]。另一方面, 多年冻土受地下水影响, 部分融化参与到活动层水文过程中。多年冻土层上水的季节过程及其运移方式受活动层土壤温度控制, 活动层土壤温度和地下水位动态之间的关系可以很好地用波尔茨曼函数描述[66]

    • 由于观测困难, 多年冻土融化对活动层地下径流补给的研究一直受到限制。最近通过同位素和模拟手段, 对这一问题有了一些初步认识。祁连山黑河上游的同位素研究发现, 冻土融化对内陆河流域径流起着举足轻重的作用, 融化的径流占出山径流的20%[79], 这一结果如果可靠, 说明冻土融化的补给已经远超冰川融水的补给量。对黄河源区干流及4个支流径流变化模拟表明, 在黄河沿水文站以上流域, 多年冻土减薄速率为5.6 mm/a, 释放水量占黄河沿水文站年径流的14.4%, 唐乃亥水文断面以上多年冻土融化补给量占4.9%[80], 尽管这一结果的不确定性很大, 但至少给出了一个数量结果;相同地区对径流变化的分析发现[81], 相对于1965—1989年, 1990—2003年黄河源径流呈减少之势, 气候变化和冻土退化分别可解释其中的55%和33%, 在以多年冻土为主的吉迈站以上流域, 冻土退化可解释径流减少的71%, 而相对于1990—2003年, 在蒸散发显著增加和多年冻土退化导致地下水储量增加综合影响下, 尽管降水量明显增加, 2004—2015年径流并没有降水增加显著。模拟和同位素结果均显示, 多年冻土融化不仅显著影响地表和地下径流过程, 也影响地下水系联通性和地下径流量[82-84]

      黄河源区的研究表明, 3~10 m深度多年冻土含冰量约为52 km3, 单位体积含冰量为0.31 m3/m3, 在多年冻土上限附近, 含冰量较大[85]。因此, 多年冻土顶板融化必然会有大量水量释放出来, 补给地下径流。黄河源试验小流域的同位素和电导率径流分割给出的结果显示, 地下冰融化对地表径流的补给量占到13%~17%[67]222Rn和同位素分析的结果显示, 持续的多年冻土退化对地表水和地下水径流过程具有显著而又复杂的影响[82-83]

      多年冻土与地表水可能发生直接联系的就是热融湖(热喀斯特湖塘)。观测与调查显示, 1969—2010年青藏高原热融湖快速增加, 主要表现在小湖塘数量的增加和大湖塘面积的扩张[86]。已有研究表明, 在气候变暖影响下, 热融湖的扩张与多年冻土层上水径流增加有关[67, 87-89]。稳定同位素与模型分析表明, 降水、河水、热融湖和多年冻土冰的融化之间存在显著的水文联系[67]。2011—2012年的观测数据显示, 多年冻土融化对热融湖的贡献可达61%[87], 表明青藏高原多年冻土融化对湖塘发展影响显著。

    • 在气候变暖影响下, 多年冻土活动层及多年冻土自身均发生着变化, 这些变化必然会对冻土水文过程产生影响。模拟结果显示, 多年冻土退化可以导致地表径流、基流和地下径流增加, 壤中流减少, 增减的幅度与流域冻土覆盖率成正比, 且地表径流、基流和地下水位对多年冻土退化的敏感度远高于包气带土壤水分、壤中流和地下径流[84]

      无论是东北[90-91]、西北[35, 92-94]、青藏高原腹地[95], 还是喜马拉雅山区和黄河源区[80, 96-97], 多年冻土区大部分流域冬季(枯水期)径流增加。研究表明, 祁连山北坡由于土壤温度上升, 导致活动层内储蓄能力增加, 整个冷季(11—3月)径流显著增加, 而且径流变化最大的地带出现在多年冻土退化显著的冻土边缘区[35]。多年冻土减薄、活动层厚度加深及地温上升, 这些变化有利于地表水下渗, 增强土壤储水能力, 促进地下水径流, 同时液态水带来的热量也对多年冻土产生影响, 是导致冬季径流增加的原因[29]。冬季径流增加也使得年内径流过程趋于平缓、径流期延长[29, 35, 70, 93, 95]。但加拿大西北英格兰湾泥炭沼泽区多年冻土活动层对水文影响的研究则给出了相反的结果, 由于活动层水力梯度的降低、活动层的增厚以及沼泽草原表面积的减少, 2001—2010年多年冻土融化已经使地表径流减少了47%[98]。这些结果表明, 气候变暖背景下冻土变化对径流的影响是复杂的, 许多问题有待深入研究。

      上述研究表明, 多年冻土退化已经或多或少地对地表径流和地下径流产生了影响, 这种影响的突出表现是多年冻土退化对径流的直接补给作用。尽管还存在较大的不确定性, 但补给的数量似不可忽视, 有些流域甚至达到一定量级。值得指出的是这种由多年冻土退化对地表和地下径流的补给是长期的、持续的、相对稳定的, 其作用不仅表现在补给量方面, 可能更重要的是其在季、年、多年和长期的水文调节方面, 这也是未来研究关注的重点问题之一。

    • 过去几十年冰冻圈水文过程正在发生着明显改变。本文通过对中国冰冻圈水文过程变化研究进行梳理和总结, 总体上可得出以下认识:

      (1) 1960年以来中国冰川融水整体上呈现增加趋势, 增加幅度与冰川规模大小和地方升温强度有关。宏观上, 冰川融水在1980左右出现第一次加速, 到2000年左右出现了再次加速增长过程, 这种变化与物质平衡的变化相对应。在流域尺度上, 冰川覆盖率低、以小冰川为主的流域, 冰川融水“先增后减”的拐点已经出现, 冰川规模较大的流域, 冰川融水拐点出现较晚或在本世纪不出现, 冰川规模介于二者之间的流域, 冰川融水在未来10~20 a会出现冰川融水拐点。

      (2) 融雪径流对中国北方具有举足轻重的作用, 大多数河流融雪径流补给率为15%~25%, 最高可达60%以上。1960—2014年, 中国东北地区融雪径流以减少为主, 西北地区尤其是新疆天山和阿尔泰地区以增加为主, 青藏高原有增有减, 融雪径流变化整体上差异较大。过去几十年融雪径流期提前, 整个融雪期向前推移, 峰值提前, 新疆提前20~30 d, 青藏高原提前5~10 d。

      (3) 在多年冻土区, 对径流影响最大的是多年冻土活动层。冻土区径流形成受重力和热力双驱影响, 在径流模拟中必须考虑热量平衡。过去几十年随着多年冻土退化, 多年冻土区大部分流域冬季(枯水期)径流增加。多年冻土退化对径流的直接补给作用不可忽视, 有些流域多年冻土退化对地表和地下径流的补给量甚至达到一定量级, 其在季、年、多年和长期的水文调节方面, 是未来研究关注的重点问题之一。

参考文献 (99)

目录

    /

    返回文章
    返回