基于组件式水文模型的径流模拟不确定性分析以长江上游流域为例

Analysis of runoff simulation uncertainty based on component-based hydrological model in the Upper Yangtze River basin

  • 摘要: 为评估降水数据、模型结构和模型参数对径流模拟不确定性的影响,本研究选取4种降水数据(站点实测和CRUJRA、CMFD、ERA5-Land格点数据),构建模块化的组件式水文模型,采用动态Sobol'敏感性分析方法,以长江上游51个分区流域为研究对象,分析降水数据、模型结构与模型参数在径流模拟中的敏感性。研究结果表明:①模型参数对径流模拟不确定性的贡献最大,多年平均总阶敏感性指数在分区流域的中位数为0.59,高于模型结构(0.51)和降水数据(0.36);②壤中流是最敏感的水文子过程,蒸散发过程次之,积融雪、地表径流、基流过程的敏感性较低,水文子过程的敏感性具有年内变异性,以积融雪过程最为显著;③积融雪、蒸散发和壤中流过程的相关参数是影响径流模拟不确定性的关键参数;④平均温度、平均海拔和水力传导度是积融雪、蒸散发和壤中流过程模型结构和参数敏感性的显著相关因子。研究识别了径流模拟不确定性的敏感因素及其时间变化规律,可为流域水文模型的结构与参数优化提供依据。

     

    Abstract: To evaluate the relative influence of precipitation data, model structure and model parameters on runoff simulation uncertainty, this study selected four multiple precipitation datasets (station observations, CRUJRA, CMFD, ERA5-Land gridded data) and constructed a modular component-based hydrological model. The dynamic Sobol' sensitivity analysis method was applied to quantify the sensitivity of input data, model structure, and parameters across 51 sub-basins in the Upper Yangtze River basin. The results are as follows: ①Model parameters contribute most significantly to runoff simulation uncertainty, with the median of multi-year average total order sensitivity index being 0.59 across sub-basins, followed by model structure (0.51) and precipitation data (0.36). ②The interflow process exhibits the highest sensitivity, followed by evapotranspiration, snow balance, surface runoff and baseflow processes. The sensitivities of hydrological sub-processes demonstrate seasonal variability, with the snow balance process being the most pronounced. ③Parameters related to snow balance, evapotranspiration, and interflow processes are critical parameters influencing the runoff simulation uncertainty. ④Mean temperature, elevation, and hydraulic conductivity are significant factors influencing model structure and parameter sensitivities of snow balance, evapotranspiration, and interflow processes. The study identifies time-varying sensitivity patterns of precipitation data, model structure and parameters on runoff simulation uncertainty, providing insights for optimizing hydrological model structure and parameterization.

     

/

返回文章
返回