融合先验信息与深度学习的小样本水文建模

Hydrological modeling with priors information and deep learning under small-sample conditions

  • 摘要: 水文建模在部分区域常受小样本问题制约,导致性能显著下降。为此,本文提出了一种融合水文先验信息的Gamma卷积神经网络(GammaConv-Net,GCN),通过Gamma分布概率密度函数刻画降雨径流的时滞响应机制,引入径流权重分配结构以显式表征流域调蓄作用及多时间尺度径流成分,并以端到端方式联合优化水文物理参数与网络权重,实现参数自适应学习。在北江流域石角站的试验中,多核结构GCN在全样本下纳什效率系数(ENS)达0.90以上,优于新安江模型(XAJ)与多层感知机(MLP);在5%极小样本条件下,ENS仍保持0.86(XAJ为0.67,MLP为0.73)。所得Gamma参数呈现区域适应性,合理解释了径流时滞特征。研究表明,GCN有效提升了小样本水文建模的数据效率与可解释性。

     

    Abstract: Hydrological modeling is often constrained by small-sample problems in certain regions, leading to a significant decline in performance. To address this issue, this paper proposes a Gamma Convolutional Neural Network (GCN) that integrates hydrological prior information. It characterizes the time-lag response mechanism of rainfall—runoff using the Gamma distribution probability density function. A runoff weight allocation structure is incorporated to explicitly represent basin storage effects and multi-timescale runoff components. Moreover, GCN jointly optimizes hydrophysical parameters and network weights in an end-to-end manner to achieve adaptive parameter learning. In the test conducted at the Shijiao Station in the Beijiang River Basin, the multi-kernel GCN network achieved a Nash-Sutcliffe efficiency coefficient (ENS) of over 0.90 under full-sample conditions, outperforming the Xin’anjiang Model (XAJ) and Multilayer Perceptron (MLP). For a minimal sample size of 5%, ENS maintained a value of 0.86 (XAJ: 0.67, MLP: 0.73). The obtained Gamma parameter exhibited regional adaptability, offering a plausible interpretation of the runoff’s time-lag characteristics. The study demonstrates that GCN effectively improves both data efficiency and interpretability in small-sample hydrological modeling.

     

/

返回文章
返回