• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

渗透系数的空间变异性对污染物运移的影响研究

阎婷婷, 吴剑锋

阎婷婷, 吴剑锋. 渗透系数的空间变异性对污染物运移的影响研究[J]. 水科学进展, 2006, 17(1): 29-36.
引用本文: 阎婷婷, 吴剑锋. 渗透系数的空间变异性对污染物运移的影响研究[J]. 水科学进展, 2006, 17(1): 29-36.
YAN Ting-ting, WU Jian-feng. Impacts of the spatial variation of hydraulic conductivity on the transport fate of contaminant plume[J]. Advances in Water Science, 2006, 17(1): 29-36.
Citation: YAN Ting-ting, WU Jian-feng. Impacts of the spatial variation of hydraulic conductivity on the transport fate of contaminant plume[J]. Advances in Water Science, 2006, 17(1): 29-36.

渗透系数的空间变异性对污染物运移的影响研究

基金项目: 国家自然科学基金资助项目(40002022;40472130)
详细信息
    作者简介:

    阎婷婷(1979- ),女,江苏南京人,美国Arizona大学水文与水资源学系博士研究生.主要从事地下水流数值模拟研究.E-mail:jfwu@nju.edu.cn

  • 中图分类号: P641;X523

Impacts of the spatial variation of hydraulic conductivity on the transport fate of contaminant plume

Funds: The study is financially supported by the National Natural Science Foundation of China(No.40002022&No.40472130).
  • 摘要: 随机水文地质学方法,较传统的确定性方法而言,是解决非均质含水层中水流和溶质运移问题的一种更为合理的手段。据以往研究,假设渗透系数场遵循对数正态分布,利用直接傅立叶变换方法来生成渗透系数随机场。应用基于随机理论的蒙特卡罗方法,来研究渗透系数的空间变异性对污染物运移结果的影响。实例研究表明,污染物在含水层中运移过程中污染羽的展布范围(二阶矩)随着渗透系数空间变异方差的增大而扩大,而污染羽在空间上的质心位置(一阶矩)基本不受方差的影响,仅取决于渗透系数随机场的均值大小。另外还分析了污染羽在各点的浓度变化方差和变异系数分别随渗透系数变异方差的变化状况。
    Abstract: Compared with commonly used deterministic methods,the stochastic hydrogeology method is a more rational resort for solving the flow and transport problems in the heterogeneous aquifers. On the assumption that the hydraulic conductivity field follows a lognormal distribution,the direct Fourier transform is introduced to generate multiple realizations of hydraulic conductivity field. Then the Monte Carlo method,based on the stochastic theory,is applied to investigate the effect of the spatial variation of hydraulic conductivity on the fate of contaminant plume. For the contaminant plume examined in this synthetic example study the spatial second moments defining the spread of the contaminant plume around its centroid increase with the enlargement of the variance of hydraulic conductivity distribution,while the first moment specifying the centroid of the plume is not influenced by the variance of hydraulic conductivity but dominated by the mean of hydraulic conductivity. Additional analysis demonstrates the sensitivity of both variance and coefficient of variation of plume concentration to the various variances of hydraulic conductivity field.
  • [1] 孙讷正.地下水污染——数学模型和数值方法[M].北京:地质出版社,1989.
    [2] 朱学愚,谢春红.地下水运移模型[M].北京:建筑工业出版社,1990.
    [3] Dettinger M D,Wilson J L.First order analysis of uncertainty in numerical models of groundwater flow,Part 1:Mathematical development [J].Water Resources Research,1981,17(1):149-161.
    [4] 姚磊华.地下水水质模型的Taylor展开随机模拟方法[J].工程勘察,1998(2):25-28.
    [5] Meyer P D,Eheart J W,Ranjithan S,et al.Design of Groundwater monitoring networks for landfills[A].In:Kundzewicz Z Weds.Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resources[C].Cambridge University Press,1995,190-196.
    [6] Tiedeman C,Gorelick S M.Analysis of uncertainty in optimal groundwater contaminant capture design[J].Water Resources Research,1993,29(7):2 139-2 154.
    [7] Freeze R A.A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media[J].Water Resources Research,1975,11(5):725-741.
    [8] Gelhar L W.Stochastic subsurface hydrology from theory to applications[J].Water Resources Research,1986,22(9):135-145.
    [9] Anderson M P.Characterization of geological heterogeneity[A ].In Dagan G and Neuman S P eds.Subsurface Flow and Transport:A Stochastic Approach[C].Cambridge University Press,UK,1997,23-43.
    [10] Drazer G,Koplik J.Tracer dispersion in two-dimensional rough fractures[J].Physical Review E,2001,63(5),Art.No.056104.doi:10.1103/phys Re E.63.056104.
    [11] Andrade Jr J S,Almeida M P,Filho J M,et al.Fluid flow through porous media:the role of stagnant zones[J].Physical Review Letters,1997,17,3901-3904.
    [12] Tompson A F B,Gelhar L W.Numerical simulation of solute transport in three-dimensional,randomly heterogeneous porous demia[J].Water Resources Research,1990,26(10):2541-2562.
    [13] Koltermann C E,Gorelick S M.Heterogeneity in sedimentary deposits:A review of structure-imitating,process-imitating,and descriptive approaches[J].Water Resources Research,1996,32(9):2617-2658.
    [14] Robin M J L,Gutjahr A L,Sudicky E A,et al.Cross-correlated random field generation with the direct Fourier transform method[J].Water Resources Research,1993,29 (7):2 385-2 397.
    [15] Gutjahr A L.Fast Fourier transform for random field generation,project report for Los Alamos grant,contract 4-R58-2690R[R].New Mexico:New Mexico Institute of Mining and Technology,Socorro,1989.
    [16] McDonald M G,Harbaugh A W.A modular three-dimensional finite-difference ground water flow model[R].USGS Techniques of Water Resources Investigations,Book 6,1988.
    [17] Zheng C,Wang P P.MT3DMS:A modular three-dimensional multispecies transport model for simulation of advection,dispersion and chemical reactions of contaminants in ground water systems:Documentation and user's guide,Contract Report SERDP-99-1 [R].U S Army Engineer Research and Development Center,Vicksburg,Mississippi,1999 (available at http://hydro.geo.ua.edu/mt3d).
    [18] Freyberg D L.A natural gradient experiment on solute transport in a sand aquifer:2.Spatial moments and the advection and dispersion of nonreactive tracers[J].Water Resources Research,1986,22(13):2 031-2 046.
    [19] Ezzedine S,Rubin Y.Analysis of the Cape Cod tracer data[J].Water Resources Research,1997,33(1):1-11.
    [20] Kunstmann H,Kinzelbach W.Computation of stochastic wellhead protection zones by combining the first-order second-moment method and Kolmogorov backward equation analysis[J].Journal of Hydrology,2000,237:127-146.
计量
  • 文章访问数:  134
  • HTML全文浏览量:  39
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-02
  • 修回日期:  2004-11-29
  • 刊出日期:  2006-01-24

目录

    /

    返回文章
    返回