基于大语言模型的交互式水文模型参数优化特性以HBV和VIC模型为例

Interactive parameter optimization characteristics of hydrological models based on Large Language Models: a case study of the HBV and VIC models

  • 摘要: 复杂物理分布式水文模型计算成本高昂,传统全局优化算法因需大量物理模型运算而难以适用于此类优化问题。以较少次数的物理模型运行寻找最优参数,对于复杂模型的优化迭代求解具有重要意义。本文提出基于大语言模型(Large language models,LLMs)的智能交互式参数优化框架,以HBV和VIC模型为例系统评估6种主流LLMs在水文模型参数优化中的表现。结果表明:①LLMs凭借对参数物理含义和反馈指标的深度理解,平均仅需45次迭代即可达到95%最优解,显著优于传统算法(100次以上);②LLMs在低中维参数空间(参数≤6)表现优异,在高维参数任务中其水文模型参数优化性能衰减严重,但推理型模型展现出更强鲁棒性;③专家知识引导策略下VIC模型平均纳什效率系数较零知识策略提升0.14,上下文记忆机制有效增强了优化稳定性。本文将LLMs引入水文模型参数优化过程,证明LLMs“诊断—反馈—调整”在模型参数优化中的有效性,可为大语言模型赋能科学研究的范式创新提供参考。

     

    Abstract: Complex distributed hydrological models based on physical factors involve high computational costs, and it is difficult to apply conventional global optimization algorithms to these models because of the large number of model simulations required. Efficiently finding optimal parameters with fewer model executions is therefore crucial for the iterative optimization of complex models. This paper proposes an intelligent interactive parameter optimization framework based on large language models (LLMs) and systematically evaluates the performance of six mainstream LLMs in hydrological model parameter optimization, using the Hydrologiska Byråns Vattenbalansavdelning (HBV) and Variable Infiltration Capacity (VIC) models as case studies. The results show that: ① LLMs, with their deep understanding of the physical meanings of parameters and feedback indicators, achieve 95% of the optimal solution with an average of only 45 iterations, significantly outperforming conventional algorithms, which typically require over 100 iterations; ②LLMs perform excellently in low- to medium-dimensional parameter spaces (≤6 parameters), while their optimization performance declines significantly in high-dimensional parameter tasks, though inference-based models exhibit stronger robustness; and ③ under expert knowledge-guided strategies, the average Nash efficiency coefficient of the VIC model improves by 0.14 compared to zero-knowledge strategies, and the context memory mechanism effectively enhances optimization stability. This study introduces LLMs into the hydrological model parameter optimization process, demonstrating the effectiveness of a diagnosis—feedback—adjustment approach, and provides a reference for paradigm innovation in empowering scientific research with LLMs.

     

/

返回文章
返回