• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

非均质土柱中溶质迁移的连续时间随机游走模拟

熊云武, 黄冠华, 黄权中

熊云武, 黄冠华, 黄权中. 非均质土柱中溶质迁移的连续时间随机游走模拟[J]. 水科学进展, 2006, 17(6): 797-802.
引用本文: 熊云武, 黄冠华, 黄权中. 非均质土柱中溶质迁移的连续时间随机游走模拟[J]. 水科学进展, 2006, 17(6): 797-802.
XIONG Yun-wu, HUANG Guan-hua, HUANG Quan-zhong. Modeling solute transport in heterogeneous soil column using continuous time random walk[J]. Advances in Water Science, 2006, 17(6): 797-802.
Citation: XIONG Yun-wu, HUANG Guan-hua, HUANG Quan-zhong. Modeling solute transport in heterogeneous soil column using continuous time random walk[J]. Advances in Water Science, 2006, 17(6): 797-802.

非均质土柱中溶质迁移的连续时间随机游走模拟

基金项目: 国家自然科学基金资助项目(50479011;50339030;50279025);教育部新世纪优秀人才支持计划(NCET-05-0125)~~
详细信息
    作者简介:

    熊云武(1980- ),男,重庆人,硕士研究生,主要从事水资源与水环境方面的研究.

    通讯作者:

    黄冠华,E-mail:ghuang@cau.edu.cn

  • 中图分类号: P641.2

Modeling solute transport in heterogeneous soil column using continuous time random walk

Funds: The study is financially supported by the National Natural Science Foundation of China(No.50479011,50339030,50279025).
  • 摘要: 非均质介质中溶质迁移往往出现非费克现象,传统的对流弥散方程(ADE)则难以较好地描述这种现象.采用连续时间的随机游走理论(CTRW)研究1250cm长一维非均质土柱中溶质运移问题,探讨CTRW模型中参数及非费克迁移的变化特征.研究结果表明,β值的大小与介质的非均质特征有关,非均质性越强,β值越小,但β值具有相对的稳定性,然而ADE的弥散系数则具有随尺度增大而增大的现象.对于介质非均质性较强和非费克现象较明显的溶质穿透曲线,尤其是在拖尾部分,与ADE相比,CTRW具有较高的模拟精度.
    Abstract: Solute transport in heterogeneous media always occurs in the non-Fickian process with early arrival and long-tail. We analyze the data of the breakthrough curves(BTCs)measured in a 1 250 cm long heterogeneous soil column with the continuous time random walk(CTRW)and the advection-dispersion equation(ADE). It is found that Fickian behavior occurs in the transport at the distances from the inlet to 100 cm with a β value larger than 2,which is attributable to relatively homogeneous packing. Within the distances from 200 cm to 700 cm,the transport has significant non-Fickian behavior with β=0.915±0.024,this is due to the highly heterogeneity when packing the column. While the moderate non-Fickian transport isfound within the distances from 800 cm to 1200cm,and theβvalue is 1.19±0.0691 Compared with the dispersion coefficient of ADE,βvalue is relative stable. Better simulation results are also obtained especially for the tails of BTCs by using CTRW with respect to ADE. It implies that CTRW is a useful method to describe the scale-dependent transport and non-Fickian trans-port.
  • [1] Bear J.Dynamics of Fluids in Porous Media[M].American Elsevier Publishing Company,INC,1972.
    [2] Benson D A.The Fractional Advection-Dispersion Equation:Development and Application[D].Dissertation of Doctorial Degree,University of Nevada Reno,1998.
    [3] Benson D A,Wheatcraft S W,Meerschaert M M.The fractional-order governing equation of Lēvy motion[J].Water Resources Research,2000a,36(6):1413-1423.
    [4] Benson D A,Wheatcraft S W,Meerschaert M M.Application of a fractional advective-dispersion[J].Water Resources Research,2000b,36(6):1403-1412.
    [5] Huang G H,Huang Q Z,Zhan H B.Evidence of one-dimensional scale-dependent fractional advection dispersion[J].Journal of Contaminant Hydrology,2005 (in review).2006,85(1~2):53-71.
    [6] Huang Q Z,Huang G H.Modeling adsorbing solute transport with fractional advection dispersion equation[A].In Huang,G Pereira,L S,2004.Land and Water Management:Decision Tools and Practice,Proceedings of 2004 International Commission of Agricultural Engineering Conference[C].Beijing,China,Oct.11-14,China Agriculturae Press,2004,1046-1053.
    [7] Berkowitz B,Scher H.On characterization of anomalous dispersion in porous and fractured media[J].Water Resources Research,1995,31(6):1461-1466.
    [8] Berkowitz B,Scher H.Anomalous transport in random fracture networks[J].Physical Review Letters,1997,79(20):4038-4041.
    [9] Berkowitz B,Scher H.Theory of anomalous chemical transport in fracture networks[J].Physical Review E,1998,57(5):5858-5869.
    [10] Scher H,Lax M.Stochastic transport in a disordered solid,I.Theory[J].Physical Review B,1973a,7(10):4491-4502.
    [11] Scher H,Lax M.Stochastic transport in a disordered solid.Ⅱ.Impurity conduction[J].Physical Review B,1973b,7(10):4502-4519.
    [12] Scher H,Montroll E W.Anomalous transit-time dispersion in amorphous solids[J].Physical Review B,1975,12(6):2455-2477.
    [13] Scher H,Shlesinger M F,Bendler J T.Time-scale invariance in transport and relaxation.Physics Today,1991,26-34.
    [14] Berkowitz B,Scher H,Silliman S E.Anomalous transport in laboratory-scale,heterogeneous porous media[J].Water Resources Research,2000,36(1):149-158 (Minor correction appears in Water Resources Research,36(5),1371,2000).
    [15] Berkowitz B,Scher H.The role of probabilistic approaches to transport theory in heterogeneous media[J].Transport in Porous Media,2001,42 (1-2):241-263.
    [16] Berkowitz B,Klafter J,and Metzler R.Physical pictures of transport in heterogeneous media:Advection-dispersion,random-walk and fractional derivative formulations[J].Water Resources Research,2002,38(10):1191.
    [17] Levy M,Berkowitz B.Measurement and analysis of non-Fickian dispersion in heterogeneous porous media[J].Journal of Contaminant Hydrology,2003,64(3-4):203-226.
    [18] Cortis A,Berkowitz B.Anomalous transport in "classical" soil and sand columns[J].Soil Science Society of America Journal,2004,68:1539-1548.Erratum:69,285 (2005).
    [19] Kosakowski G B,Berkowitz B,Scher H.Analysis of field observations of tracer transport in a fractured till[J].Journal of Contaminant Hydrology,2001,47(1):29-51.
    [20] Margolin G,Berkowitz B.Continuous time random walk revisited:first passage time and spatial distributions[J].Physica A,2004,334:46-66.
    [21] Bromly M,Hinz C.Non-Fickian transport in homogeneous unsaturated repacked sand[J].Water Resources Research,2004,40:w07402.
    [22] Shlesinger M F.Asymptotic solutions of continuous-time random walks[J].Journal of Statistical Physics,1974,10(5):421-434.
    [23] Berkowitz B,Kosakowski G,Margolin G.Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media[J].Ground Water,2001,39(4):593-604.
    [24] Margolin G,Berkowitz B.Application of continuous time random walks to transport in porous media[J].Journal of Physical Chemistry B,2000,104 (16):3942-3947 (Minor correction appears in Journal of Physical Chemistry B,104(36),8762,2000).
    [25] Huang K,Toride N,Van Genuchten M TH.Experimental investigation of solute transport in large homogeneous and heterogeneous soil columns[J].Transport in Porous Media,1995,20:298-308.
    [26] Toride N,Leij F,van Genuchten MT.The CXTFIT cod for estimating transport parameters from laboratory or field tracer experiments[R].version 2.1,Research Rep.137,U S Salinity Lab,Riverside,California,USA,1995.
计量
  • 文章访问数:  292
  • HTML全文浏览量:  32
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-08-29
  • 修回日期:  2005-12-27
  • 刊出日期:  2006-11-24

目录

    /

    返回文章
    返回