• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

三角形网格下求解二维浅水方程的和谐Godunov格式

潘存鸿

潘存鸿. 三角形网格下求解二维浅水方程的和谐Godunov格式[J]. 水科学进展, 2007, 18(2): 204-209.
引用本文: 潘存鸿. 三角形网格下求解二维浅水方程的和谐Godunov格式[J]. 水科学进展, 2007, 18(2): 204-209.
PAN Cun-hong. Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh[J]. Advances in Water Science, 2007, 18(2): 204-209.
Citation: PAN Cun-hong. Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh[J]. Advances in Water Science, 2007, 18(2): 204-209.

三角形网格下求解二维浅水方程的和谐Godunov格式

基金项目: 国家自然科学基金资助项目(40106010);浙江省自然科学基金资助项目(M403054)
详细信息
    作者简介:

    潘存鸿(1963- ),男,浙江宁波人,教授级高级工程师,硕士,主要从事河口海岸规划及研究.E-mail:panch@zihe.org

  • 中图分类号: TV131.2

Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh

Funds: The study is financially supported by the National Natural Science Foundation of China(No.40106010).
  • 摘要: 为保证计算格式的和谐性,通过特殊的底坡源项处理技术,在三角形网格上建立了求解二维浅水流动方程的具有空间二阶精度的Godunov格式。应用准确Riemann解求解法向数值通量,用改正的干底Riemann解处理动边界问题。经典型算例和钱塘江河口涌潮计算验证,表明模型健全,分辨率高,具有较大的推广应用价值。
    Abstract: In order to establish a special well-balanced scheme technique for dealing with source term due to bottom topography constructed,this paper develops a well-balanced Godunov-type scheme of the second-order accuracy for 2D shallow water flow with triangle mesh. The numerical flux of the interface between cells are computed by the exact Riemann solver,and the improved dry Riemann solver is used to deal with wet/dry problem. The model is verified to compute some typical examples and the tidal bore on the Qiantang river.The results show that the scheme is robust and accurate,and worthy to be brought into wide use.
  • [1] 胡四一,谭维炎.无结构网格上二维浅水流动的数值模拟[J].水科学进展,1995,6(1):1-9.
    [2] 谭维炎.计算流体力学——有限体积法的应用[M].北京:清华大学出版社,1998.
    [3] 褚克坚,华祖林,王惠民.二维浅水水流的一种新型三角形网格FVM计算格式[J].河海大学学报(自然科学版),2003,31(4):370-373.
    [4] 徐昆,潘存鸿.求解非平底一维浅水方程的KFVS格式[J].水动力学研究与进展,2002,17(2):140-147.
    [5] 谭维炎,胡四一.浅水流动计算中一阶有限体积法Osher格式的实现[J].水科学进展,1994,5(4):262-270.
    [6] Bermudez A,Elena Vazquez M.Upwind methods for hyperbolic conservation laws with source terms[J].Computers & Fluids,1994,23(8):1 049-1 071.
    [7] LeVeque R J.Balancing source terms and flux gradient in high-resolution Godunov methods:the quasi-steady wave propagation algorithm[J].Journal of Computational Physics,1998,148:346-365.
    [8] Bermudez A,Dervieux A,Desideri J,et al.Upwind schemes for two-dimensional shallow-water equations with variable using unstructured meshes[J].Comput Methods Appl Mech Eng,1998,155:49-72.
    [9] Vazquez-Cendon M E.Improved treatment of source terms in upwind schemes for shallow-water equation in channels with irregular geometry[J].Journal of Computational Physics,1999,148:497-526.
    [10] Zhou J G,Causon D M,Mingham C G,et al.The surface gradient method for the treatment of source terms in the shallow-water equations[J].Journal of Computational Physics,2001,168:1-25.
    [11] Gascon L,Corberan J M.Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws[J].Journal of Computational Physics,2001,172:261-297.
    [12] Hui WH,Pan Cunhong.Water level-bottom topography formulation for the shallow-water flow with application to the tidal bores on the Qiantang river[J].Computational Fluid Dynamics Journal,2003,112(3):549-554.
    [13] 潘存鸿,林炳尧,毛献忠.一维浅水流动方程的Godunov格式求解[J].水科学进展,2003,14(4):430-436.
    [14] 潘存鸿,林炳尧,毛献忠.求解二维浅水流动方程的Godunov格式[J].水动力学研究与进展,2003,A辑,18(1):16-23.
    [15] Audusse E,Bristeau M O.A well-balanced positivity preserving "second-order" scheme for shallow water flows on unstructured meshes[J].Journal of Computational Physics,2005,206:311-333.
    [16] Pan Cunhong,Lin Bingyao,Mao Xianzhong.New development in the numerical simulation of the tidal bore[A].Proceedings of the International Conference on Estuaries & Coasts[C].Hangzhou:Zhejiang University Press,2003,1:99-114.
    [17] 宋松和,李荫藩.解二维标量双曲型守恒律的满足极值原理无结构三角形网格有限体积法[J].数值计算与计算机应用,1997,(2):106-113.
    [18] Hager W H,Schwalt M,Jimenez O,et al.Supercritical flow near an abrupt wall deflection[J].Journal of Hydraulic Research,1994,32(1):103-118.
    [19] 潘存鸿,林炳尧,毛献忠.浅水问题动边界数值模拟[J].水利水运工程学报,2004(4):1-7.
计量
  • 文章访问数:  133
  • HTML全文浏览量:  47
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-09-11
  • 修回日期:  2005-12-17
  • 刊出日期:  2007-03-24

目录

    /

    返回文章
    返回