Application of power law scheme based on the triangular circumcenter to simulation of spur dike recirculating
-
摘要: 针对在非结构网格水流数值计算,将各变量储存在三角单元外心进行离散,从而避免了由于非结构网格的非正交性而使用各种校正方法所带来的校正误差.采用Rhie-Chow的动量插值思想推导出基于SIMPLE意义下的水位校正方程,并详细给出了水位校正方程的离散形式.动量方程采用数值性能优良的幂率格式.计算结果成功地模拟出丁坝上、下游涡的特征量及流场情况,与水槽试验的资料吻合良好.Abstract: The solution variables are stored at the triangular circumcenters based on unstructured meshes,which can avoid discretization errors made by all kinds of correction methods used in non-orthogonal meshes.Rhie-Chow's momentum interpolation method is adopted here to derive water level correction equation based on the SIMPLE method and a detail discretization equation is showed.The momentum equation is discretized by the power law scheme which has good numerical property.The flow phenomenon and the measured results agree with the numerical results very much,and the characteristics volumes of the eddies of the upper and down reaches around apur dike are simulated successfully.
-
[1] Chow P,Cross M,Pericleous K.A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application[J].Apply Math Modeling,1996,20(2):170-183. [2] Lien F S.A Pressure-based unstructured grid method for all-speed flows[J].Int J Numer Meth Fluids,2000,33(3):355-374. [3] Hrvoje Jasak.Error analysis and estimation for the finite volume method with applications to fluid flows[D].The University of London and Diploma of Imperial College,1996. [4] Demirdziic,Muzaferija S.Nmumerical method for coupled fluid flow heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology[J].Comput Mthods Appl Mech Engrg,1995,125:235-255. [5] Kobayashi M,Pereira M C,Pereira J C F.A second-order upwind least-squares scheme for incompressible flows on unstructured hybrid grids[J].Numerical Heat Transfer Part B,1998,34(1):39-60. [6] Marcelo H Kobayashi,José M C Pereira,José C F Pereira.A conservative finite-volume second-order-accurate projection method on hybrid unstructured Grids[J].Journal of computational Physics,1999,150:40-75. [7] Xu Minhai.Comparison of methods for diffusion flux calculation on unstructured grids[J].Journal of Engineering Thermophysics,2005,26(10):313-315. [8] Wang Z J.A quadtree-based adaptive cartesian-quad grid flow solver for Navier-Stokes equations[J].Computers & Fluids,1998,27(4):529-549. [9] Sylvain Boivin,Florent Cayré,Jean-Marc Hérard.A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes[J].Int J Therm Sci,2000,39:806-825. [10] Sébastien Perron,Sylvain Boivin,Jean-Marc Hérard.A new finite volume discretization scheme to solve 3D incompressible thermal flows on unstructured meshes[J].International Journal of Thermal Sciences,2004,43:833-848. [11] 陆永军,张华庆.平面二维河床变形的数值模拟[J].水动力学研究与进展,1993(3):273-284. [12] 陈阳.水利枢纽区通航水流条件平面二维数学模型的研究与应用[R].天津:天津水利水运科学研究所,1998,95-06-01-04. [13] Eymard R,Gallouet T,Herbin R.Handbook of Numerical Analysis[M].North-Holland,Amsterdam:P.G.Ciarlet.J.L.Lions(Eds.),2000. [14] Rhie C M,Chow W L.A numerical study of the turbulent flow past an isolated airfoil with training-edge separation[J].AIAA J,1983,21:1 525-1 532. [15] 程年生.丁坝绕流试验研究及数值计算[R].南京:南京水利科学研究院,1987. -

计量
- 文章访问数: 85
- HTML全文浏览量: 28
- PDF下载量: 436
- 被引次数: 0