Sea ice thermodynamic-dynamic model based on smooth particle hydrodynamics
-
摘要: 考虑海冰热力因素对其厚度、密集度的影响,在光滑质点流体动力学(SPH)基础上发展了一个海冰热力-动力数值模式。该模式既解决了传统欧拉有限差分法和质点网格法存在的数值扩散问题,同时弥补了光滑质点动力学海冰动力模式未考虑热力因素的不足,具有精确模拟冰缘线运动、计算精度高等优点。首先介绍了光滑质点流体动力学的基本原理,并对海冰生消的热力因素进行了分析,将影响冰厚和密集度的热力因素引入到光滑质点流体动力学的海冰动力模式中,得到该热力-动力模式的控制方程。应用该数值模式对渤海海冰进行了48 h数值模拟,得到了海冰厚度和速度矢量的分布规律;对JZ20-2海域的海冰厚度、冰内温度场分布以及热力因素的变化特性进行了讨论。数值模拟结果表明,该数值模式能够很好地适用于渤海海冰数值模拟,是一种有效的海冰数值模拟方法。Abstract: Considering the influences of sea ice thermodynamic factors on the ice conditions,such as thickness,concentration,a sea ice thermodynamic-dynamic model is established based on the smooth particle hydrodynamics (SPH).In this sea ice model,the numerical diffusion in the traditional methods of the finite difference method (FDM) and the particle-in-cell (PIC) is avoided,while the ice edges can be modeled with high precision when the thermodynamics is introduced into the sea ice numerical model of SPH.In this paper,the basic theory of SPH and the thermodynamic factors of sea ice are presented first.The governing equations of the sea ice thermodynamics-dynamics are addressed by the using the thermodynamics to calculate the ice thickness and concentration in the SPH numerical simulation of the sea ice dynamics With this current sea ice model,the sea ice in Bohai Sea is simulated in 48 hours,and the distributions of sea ice thickness and drifting velocity in the whole ice field are obtained Moreover,the ice thickness,the temperature in vertical direction and the other thermodynamic factors are also discussed in detail.With the numerical results above,it can be concluded that this sea ice thermodynamic-dy-namic model based on the SPH method is an effective numerical model,and can be applied well in the sea ice simulation of Bohai Sea.
-
-
[1] Zhang J,Rothroch D,Steele M.Recent changes in Arctic sea ice:the interplay between ice dynamics and thermodynamics[J].Journal of Climate,2000,13(17):3 099-3 114. [2] 吴辉碇,白珊,张占海.海冰动力学的数值模拟[J].海洋学报,1998,22(7):1-13. [3] Flato G M.A particle-in-cell sea-ice model[J].Atmosphere-Ocean,1993,31(3):339-358. [4] 季顺迎,岳前进,赵凯.渤海海冰动力学的质点网格法数值模拟[J].水动力学研究与进展,2003,18(6):748-760. [5] Pritchard R,Mueller A,Hanzlick D,et al.Forecasting Bering sea ice edge behavior[J].Journal of Geophysical Research,1990,95(C1):775-788. [6] Lindsay R W,Stern H L.A new Lagrangian model of Arctic sea ice[J].Journal of Physical Oceanography,2004,34(1):272-283. [7] Gutfraind R,Savage S B.Smoothed Particle Hydrodynamics for the simulation of broken-ice fields:Mohr-Coulomb-Type rheology and frictional boundary conditions[J].Journal of Computational Physics,1997,134(2):203-215. [8] 季顺迎,岳前进.辽东湾区域性漂移海冰的SPH数值模拟[J].水利水运工程学报,2001(4):8-15. [9] Shen H T,Chen Y C,Wake A,et al.Lagrangian discrete parcel simulation of river ice dynamics[J].International Journal of Offshore and Polar Engineering,1993,3(4):328-332. [10] Shen H T,Su Junshan,Liu Lianwu.SPH simulation of river ice dynamics[J].Journal of Computational Physics,2000,165(2):752-770. [11] Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to non-spherical stars[J].MNRAS,1977,181(4):375-378. [12] 岳前进,季顺迎,苗文东,等.辽东湾冰季太阳辐射分析[J].海洋与湖沼,2000,31(5):562-567. [13] Lu Q M.On mesoscale modeling of the dynamics and thermodynamics of sea ice[R].Copenhagen:Technical University of Denmark,1988.50-73. [14] Gabison R.A thermodynamic model of the formation growth and decay of first-year sea ice[J].Journal of Glaciology,1987,33(4):105-109. [15] 王仁树.渤海海冰的数值试验[J].海洋学报,1984,6(4):572-580. [16] 季顺迎,岳前进,姚征.渤海海冰动力学中的粘弹塑性本构模型[J].水科学进展,2002,13(5):599-604.
计量
- 文章访问数: 103
- HTML全文浏览量: 35
- PDF下载量: 653