Water quality mathematical model for looping river network based on uncertain information
-
摘要: 以圣维南方程组、对流扩散方程以及未确知信息理论为基础,建立了环状河网一维水动力与未确知水质数学模型。采用Preissman四点隐格式法对圣维南方程组进行离散和采用显式差分对对流扩散方程进行离散,对河网水动力与水质分别进行了合理的编码,并考虑了泵闸等控制工程、降雨径流的影响,采用河网的三级解法编制河网非恒定流的计算程序求解各断面的水位Z和流量Q,实现了水动力和水质两模块之间的数据连接,且对微分形式的水质模型运用未确知数学理论进行了含有两个未确知参数的水质计算,从而不仅能获得污染物浓度区间值,还能得到相应的可信度。实例研究表明,建立的河网水动力模型和未确知信息的水质模型是可靠的,可以用于河网水质治理工程的数值模拟研究和水环境评估。Abstract: Based on the Saint-Venant equations,the advection-diffusion equation and the uncertain mathematics theory,both a one-dimensional hydrodynamic model and a uncertain water quality mathematical model are established.The Preissmann implicit four-point scheme is used to solve the Saint-Venant equations,and the explicit scheme is used to solve the advection-equation.Two reasonable computational codings of hydrodynamic and water quality for the river network are conducted.The model considers the controlling projects of pump and brake,rainfall-runoff.The Computer program of the unsteady flow is compiled by using the three-level solution method for river network to solve the water level and the discharge at different cross sections.The data connection of the two sub-model is realized.The differential water quality model is computed based on the uncertain mathematics theory,including two unascertained parameters at the first time.According to the model proposed,both the interval values of pollutant concentration and the respective corresponding veliability can be obtained directly.The case shows that the hydrodynamic model and the uncertain water quality model for looping river network are reliable and can be applied to water quality regulation project and the water environmental assessment.
-
Key words:
- looping river network /
- water quality model /
- unsteady flow /
- uncertainty information /
- veliability
-
[1] 沈永明,郑永红,邱大洪.香港维多利亚港三维污染精细预报模型研究[J].水利学报,2000,37(8):60-69. [2] 阮晓红.WASP5水质模型在平原河网区水环境模拟中的开发与应用[D].南京:河海大学,2004. [3] 褚君达,徐惠慈.河网水质模型及其数值模拟[J].河海大学学报,1992,20(1):17-221. [4] 陈长胜.海洋生态系统动力学与模型[M].北京:高等教育出版社,2003.249-306. [5] 李如忠,洪天求,钱家忠.二维河道瞬时排污的未确知水质模拟模型研究[J].水力发电学报,2006,25(2):42-46. [6] 曾思育,徐一剑,张天柱.环状河网水质模型在水污染控制规划中的应用[J].水科学进展,2004,15(2):193-196. [7] 徐一剑,曾思育,张天柱.基于不确定性分析框架的动态环状河网水质模型--以温州市温瑞塘河为例[J].水科学进展,2005,16(4):574-580. [8] 王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究[J].环境科学,2006,27(1):24-27. [9] 王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1-10. [10] 刘开第,吴和琴,王念鹏,等.未确知数学[M].武汉:华中理工大学出版社,1997.1-126. [11] 李如忠,王超,汪家权,等.基于未确知信息的河流水质模拟预测研究[J].水科学进展,2004,15(1):35-39. [12] 李如忠,钱家忠,汪家权.基于未确知模拟信息的河流水质风险评价[J].武汉理工大学学报,2005,27(1):62-66. [13] 王船海,李光炽.实用河网水流计算[M].南京:河海大学,2000. [14] Islam(1) A,Raghuwanshi N S,Singh R,et al.Comparison of gradually varied flow computation algorithms for open-channel network[J].Journal of Irrigation and Drainage Engineering,2005,131(5):457-465. -

计量
- 文章访问数: 6
- HTML全文浏览量: 1
- PDF下载量: 557
- 被引次数: 0