Numerical modeling of multi-directional random wave transformation in wave-current coexisting water areas
-
摘要: 基于波作用量守恒方程建立了波流共存场中多向随机波浪传播变形数学模型,模型中考虑了波浪绕射的影响和水流引起的波浪弥散多普勒效应,应用包含水流和地形影响的激破波模式计算波浪破碎的能量耗散,采用一阶上迎风有限差分格式离散控制方程。分别计算了有无近岸流情况下单向和多向随机波浪的波高分布,考虑水流影响的数值计算结果与物理模型实验数据吻合良好,比较分析表明,所建立的数学模型能够复演由于离岸流引起的波高增大,可用于波流共存场多向随机波浪传播变形的模拟和预报。Abstract: Based upon the wave action balance equation,a numerical predicting model is developedfor multi-directional random wave transformation in the wave-current coexistingfield,in which the diffraction effect and the Doppler shift of dispersion relation are taken into account.A bore based formulation is used to parameterize the energy dissipation associated with coupled current and depth limited wave breaking.The governing equation is discretized by a forward marching first order upwind finite difference method.The wave height distribution of uni-and multi-directional incident random waves are calculated with and without considering the nearshore currents effect.Results show that the predictions considering the current effect produce a preferable fit to the experimental data and perform well in simulating the wave height accretion due to rip currents.The mutual model-data comparisons reveal that the present model is applicable for the random waves propagating in wave-current coexisting water areas.
-
[1] Christoffersen J B,Jonsson I G.A note on wave action conservation in a dissipative current wave motion[J].Applied Ocean Research,1980,(2):179-182. [2] Herbich J B.Handbook of Coastal and Ocean Engineering[M].Houston:Gulf Publishing Co,USA,1990.703-726. [3] Liu P L F.Wave-current interactions on a slowly varying topography[J].J Geophy Res,1983,88(C7):4421-4426. [4] Chen W,Panchang V,Demirbilek Z.On the modeling of wave-current interaction using the elliptic mild-slope wave equation[J].Ocean Engineering,2005,32(17-18):2 135-2 146. [5] Yoon S B,Liu P L F.Interaction of currents and weakly nonlinear water wave in shallow water[J].J Fluid Mech,1989,105:397-419. [6] Chen Q,Madsen P A,Schaffer H A,et al.Wave-current interaction based on an enhanced Boussinesq approach[J].Coastal Engineering,1998,33(1):11-39. [7] Booij N,Ris R C,Holthuijsen L H.A third generation wave model for coastal regions.1.Model description and validation[J].J Geophys Res,1999,104(c4):7649-7666. [8] Mase H,Amamori H,Takayama T.Wave prediction model in wave-current coexisting field[CD-ROM].Proc 12th Canadian Coastal Conference[C].Dartmouth:CSCE,2005. [9] Ris R C,Holthuijsen L H,Booij N.A third generation wave model for coastal regions.2 verification[J].J Geophys Res,1999,104(C4):7667-7681. [10] Chawla A,Kirby J T.Monochromatic and random wave breaking at blocking points[J].J Geophys Res,2002,107(C7),doi: 10.1029/2001JC001042. [11] Bretherton F P,Garrett C J R.Wave trains in inhomogeneous moving media[J].Proc R Soc Lond,Ser A,1968,302:529-554. [12] Radder A C.On the parabolic equation method for water-wave propagation[J].J Fluid Mech,1979,95:159-176. [13] Mase H.Multi-directional random wave transformation model based on energy balance equation[J].J Coastal Eng,2001,43(4):317-337. [14] Thornton E B,Guza R T.Transformation of wave height distribution[J].J Geophys Res,1983,88:5925-5938. -

计量
- 文章访问数: 9
- HTML全文浏览量: 3
- PDF下载量: 538
- 被引次数: 0