• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河流中潜流交换研究进展

金光球 李凌

金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293.
引用本文: 金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293.
JIN Guang-qiu, LI Ling. Advancement in the hyporheic exchange in rivers[J]. Advances in Water Science, 2008, 19(2): 285-293.
Citation: JIN Guang-qiu, LI Ling. Advancement in the hyporheic exchange in rivers[J]. Advances in Water Science, 2008, 19(2): 285-293.

河流中潜流交换研究进展

基金项目: 国家杰出青年科学基金资助项目(50425926)
详细信息
    作者简介:

    金光球(1979- ),男,安徽六安人,博士研究生,主要从事水生态环境研究.E-mail:jingq02@126.com

  • 中图分类号: TV131.3;G353.11

Advancement in the hyporheic exchange in rivers

Funds: The study is financially supported by the Nortional Science Fund for Distinguished Young Scholars of China(No.50425926).
  • 摘要: 河水和地下水交换——潜流交换对溶质和污染物的归宿起着重要作用。潜流交换机理主要包括泵吸交换和冲淤交换。泵吸交换是由于河床形态引起的水头梯度,这些水头梯度诱导了对流传输;冲淤交换发生是由于移动河床截留和释放孔隙水。潜流交换的主要影响因素包括:河道流量、河床水力传导性、河床形态、河道弯曲、河床不均匀和背景条件。还探讨了反应性溶质、胶体颗粒共存情况下潜流交换的规律。对潜流交换研究现存的主要问题及未来研究展望提出了看法。
  • [1] 胡勘平.松花江水污染生态环境影响评估取得阶段性成果[J].环境保护,2006(3):1.
    [2] Jonsson.Effect of hyporheic exchange on conservative and reactive solute transport in streams,www.diva-portal.org/diva/getDocument? urnnbn-se-uu-diva-3522-1-fulltext,pdf,2003.
    [3] Packman A I,Marion A,Zaramella M,et al.Development of layered sediment structure and its effects on pore water transport and hyporheic exchange[J].Water,Air,& Soil Pollution:Focus,2006,12(6):69-78.
    [4] Bonlton A J,Findlay S,Marmonier P,et al.The functional significance of the hyporheic zone in streams and rivers[J].Annual Review of Ecology and Systematics,1998,29:59-81.
    [5] Triska F J,Kennedy V C,Avanzino R J,et al.Retention and transport of nutrients in a third-order stream in northwestern California:hyporheic processes[J].Ecology,1989,70:1894-1905.
    [6] 袁兴中,罗固源.溪流生态系统潜流带生态学研究概述[J].生态学报,2003,23(5):133-139.
    [7] Runkel R L,McKnight D M,Rajaram H.Modeling hyporheic zone processes[J].Advances in Water Resources,2003,26(9):901-905.
    [8] Patschke S N.Hyporheic exchange in a forested headwater stream[D].Canada:Simon Fraser University,1999.
    [9] Precht E,Franke U,Polerecky L,et al.Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J].Limnology and Oceanography,2004,49 (3):693-705.
    [10] Huettel M,Roy H,Precht E,et al.Hydrodynamical impact of biogeochemical processes in aquatic sediments[J].Hydrobiologia,2003,494:231-236.
    [11] Packman A I,Brooks N H.Hyporheic exchange of solutes and colloids with moving bedforms[J].Water Resources Research,2001,37 (10):2591-2605.
    [12] Cardenas M B,Wilson J L.Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bedforms[J].Advances in Water Resources,2007,30:301-313.
    [13] Joussona K,Johanssonb H,Worman A.Hyporheic exchange of reactive and conservative solutes in streams-tracer methodology and model interpretation[J].Journal of Hydrology,2003,278:153171.
    [14] Zaramella M,Marion A,Packman A I.Applicability of the Transient Storage Model to the hyporheic exchange of metals[J].Journal of Contaminant Hydrology,2006,84(1-2):21-35.
    [15] Findlay S.Importance of surface-subsurface exchange in stream ecosystems:The hyporheic zone[J].Limnolngy and Oceanography,1995,40(1):159-164.
    [16] Marion A,Zaramella M.A residence time model for stream-subsurface exchange of contaminants[J].Acta Geophysica Polonica,2005,53(4):527-539.
    [17] Packman A I,Brooks N H.Colloidal particle exchange between stream and stream bed in a laboratory flume[J].Marine and freshwater research,1995,46(1):233-236.
    [18] Pretty J L,Hildrew A G,Trimmer M.Nutrient dynamics in relation to surface-subanrface hydrological exchange in a groundwater fed chalk stream[J].Journal of Hydrology,2006,330(1-2):84-100.
    [19] Elliott A H,Brooks N H.Transfer of nonsorbing solutes to a streambed with bed forms:Laboratory experiments[J].Water Resources Research,1997,33(1):137-151.
    [20] Packman A I,Salehin M,Zaramella M.Hyporbeic exchange with gravel beds:basic hydrodynamic interactions and bedform-induced advective flows[J].Journal of Hydraulic Engineering,2004,130(7):647-651.
    [21] Zhon D,Mendoza C.Flow through porous bed of turbulent stream[J].Journal of Engineering Mechanics,1993,119:365-383.
    [22] Elliott A H,Brooks N H.Transfer of nonsorbing solutes to a streambed with bed forms:Theory[J].Water Resources Research,1997,33(1):123-136.
    [23] packman A I,Salehin M.Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange[J].Hydrobiologia,2003,494:291-297.
    [24] Laura K L,Donald I S.Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D[J].Advances in Water Resources,2006,29:1618-1633.
    [25] Beimers C E,Stcoher H A,Taghon G L,et al.In situ measurements of advective solute transport in permeable shelf sands[J].Continental Shelf Researeh,2004,24:183-201.
    [26] Harvey J W,Bencala K E.The effect of streambed topography on surface-subsurface water exchange in mountain catchmennts[J].Water Resources Research,1993,29(1):89-98.
    [27] Salehin M,Packman A I,Paradis M.Hyporbeic exchange with heterogeneous streambeds:laboratory experiments and modeling[J].Water Resources Research,2004,40:W11504.
    [28] Reidy C A.Variability of Hyporbeic Zones in Puget Sound Iowland Streams[D].USA:University of Washington,2004.
    [29] Storey R G,Howard K W F,Williams D D.Factors controlling riffle-soale hyporbeic exchange and their seasonal changes in a gaining stream:A three-dimeusional groundwater flow model[J].Water Resources Resesrch,2003,39(2):1034.
    [30] Wondzell S M,Swanson F J.Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream.Ⅱ:Nitrogen cycling[J].Journal of the North American Benthological Society,1996,15(1):20-34.
    [31] Worman A,packman A I,Johansson H,et al.Effect of flow-inducod exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers[J].Water Resources Research,2004,38(1):1001.
    [32] Marion A,Bellinello M,Guymer I,et al.Effect of bedform geometry on the penetration of nonreactive solutes into a streambed[J].Water Resources Research,2002,38(10):1209.
    [33] Wroblicky G J,Campans M E,Valett H M,et al.Seasonal variation in surface-subsurface water exchange and lateral hyporbeic area of two stream-aquifer systems[J].Water Resourees Research,1998,34(3):317-328.
    [34] Baxter C V,Hauer F R.Geomorphology,hyporheic exchange,and selection of spawning habitat by bull trout (Salvelinus confluentus)[J].Canadian Journal of Fisheries and Aquatic Sciences,2000,57(7):1 470-1481.
    [35] Kasahara T,Wondsell S M.Geomorphic controls on hyporheic exchange flow in mountain streams[J].Water Resources Research,2003,39(1):1005.
    [36] Cardenas M B,Wilson J L,Zlotnik V A.Impact of heterogeneity,bedform configuration,and channel curvature on hyporbeie exchange[J].Water Resources Research,2004,40:W08307.
    [37] Ren J,packman A I.Effects of Background Water Composition on Stream-Subsurface Exchange of Submicton Colloida[J].Journal of Environmental Engineering,2002,128(7):624-634.
    [38] Ren J,packman A I.Coupled Stream-Subsurface Exchange of Colloidal Hematite and Dissolved Zinc,Copper,and Phosphate[J].Environmental science & technology,2005,39(17):6387-6394.
    [39] Harvey J W,Fuller C W.Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance[J].Water Resources Research,1998,34(4):623-636.
    [40] Ren J,Packmon A I.Stream-subsurface exchange of zinc in the presence of silica and kaolinite[J].Environmental Science and Technology,2004,38(24):6571-6581.
    [41] Searcy K E,packman A I,Atwill E R,et al.Deposition of Cryptosporidium Oocysts in Streambeds[J].Applied and Environmental Microbiology,2006,72(3):1810-1816.
    [42] Packman A I,Brooke N H,Morgan J J.A physicocbemical model for colloid exchange between a stream and a sand streambed with bed forms[J].Water Resources Research,2000,36(8):2351-2362.
    [43] packman A I,Brooke N H,Morgan J J.Kaolinite exchange between a steam and streambed:Laboratory experiments and validation of a colloid transport model[J].Water Resourees Research,2000,36(8):2363-2372.
    [44] Packman A I,MacKay J S.Interplay of stream-subsurface exchange,clay particle deposition,and streambed evolution[J].Water Resources Research,2003,39(4):1094.
    [45] Rehg K J,Packman A I,Ren J.Effects of suspended sediment characteristics and bed sediment transport on streambed elogging[J].Hydrological Processes,2005,19(2):413-427.
    [46] Crenshaw C L,Valett H M,Webster J R.Effects of augmentation of coarse particulate organic matter on metabolism snd nutrient retention in hyporheic sediments[J].Freshwater Biolosy,2002,47 (10):1 820-1 83 1.
    [47] Zimmermann A E,Lapointe M.Intergranular flow velocity throush salmonid redds:sensitivity to fines infiltration from low intensity sediment transport events[J].River Research and Applications,2005,21:865-881.
    [48] Battin T J.Hydrodynamic,is a major determinant of stream bed biofilm activity:From the sediment to the reach scale[J].Limnology and Oceanography,2000,45:1308-1319.
    [49] Packman A I,Battin T J,Newbeld J D.Challenges in Ecohydraulics Biophysicocbemical Processes at the Stream-Subsurface Interface.http://kfki.baw.de/conferences/ICHE/2002-Warsaw/ARTICLES/PDF/207C1.pdf,2002.
    [50] Godillot R,Caussade B,Ameziane T,et al.Interplay between turbulence and periphyton in rough open-channel flow[J].Journal of Hydraulic Research,2001,39:227-239.
  • [1] 蔡奕, 石涛, 姚俊兰, 刘曙光, 阮西科, 徐佳.  河道潜流交换水动力过程现场监测研究进展 . 水科学进展, 2021, 32(4): 638-648. doi: 10.14042/j.cnki.32.1309.2021.04.015
    [2] 晏自立, 徐元, 李丹勋.  推移质翻越低坝输移特性的试验研究 . 水科学进展, 2020, 31(3): 356-365. doi: 10.14042/j.cnki.32.1309.2020.03.005
    [3] 赵维阳, 杨云平, 张华庆, 张明进, 袁晶, 杨保岑.  三峡大坝下游近坝段沙质河床形态调整及洲滩联动演变关系 . 水科学进展, 2020, 31(6): 862-874. doi: 10.14042/j.cnki.32.1309.2020.06.006
    [4] 陈孝兵, 郑春阳, 袁越.  河床沉积物非均质性影响下的潜流交换数值模拟 . 水科学进展, 2019, 30(2): 220-229. doi: 10.14042/j.cnki.32.1309.2019.02.007
    [5] 姬雨雨, 陈求稳, 施文卿, 易齐涛, 林育青.  水库运行对漫湾库区洲滩水热交换影响 . 水科学进展, 2018, 29(1): 73-79. doi: 10.14042/j.cnki.32.1309.2018.01.009
    [6] 任杰, 程嘉强, 杨杰, 程琳.  潜流交换温度示踪方法研究进展 . 水科学进展, 2018, 29(4): 597-606. doi: 10.14042/j.cnki.32.1309.2018.04.016
    [7] 刘东升, 赵坚, 吕辉.  大坝下游河岸带冬夏季水热交换特征对比 . 水科学进展, 2017, 28(1): 124-132. doi: 10.14042/j.cnki.32.1309.2017.01.014
    [8] 张文静, 周晶晶, 刘丹, 李昊洋, 于喜鹏, 桓颖.  胶体在地下水中的环境行为特征及其研究方法探讨 . 水科学进展, 2016, 27(4): 629-638. doi: 10.14042/j.cnki.32.1309.2016.04.018
    [9] 张维, 唐翔宇, 鲜青松.  紫色土坡地泥岩裂隙潜流中的胶体迁移 . 水科学进展, 2015, 26(4): 543-549. doi: 10.14042/j.cnki.32.1309.2015.04.011
    [10] 于靖, 张华.  城市小型河流水动力弥散和潜流交换过程 . 水科学进展, 2015, 26(5): 714-721. doi: 10.14042/j.cnki.32.1309.2015.05.013
    [11] 孙东坡, 刘明潇, 张晓雷, 孙羽.  冲积性河流河床冲淤调整对洪水泥沙过程的响应——以黄河游荡型河段为例 . 水科学进展, 2014, 25(5): 668-676.
    [12] 陈孝兵, 赵坚, 李英玉, 陈力.  床面形态驱动下潜流交换试验 . 水科学进展, 2014, 25(6): 835-841.
    [13] 林俊强, 严忠民, 夏继红.  弯曲河岸侧向潜流交换试验 . 水科学进展, 2013, 24(1): 118-124.
    [14] 李娜, 任理.  连续时间随机游动理论模拟多孔介质中溶质运移的研究进展 . 水科学进展, 2012, 23(6): 881-886. doi: CNKI: 32.1309.P.20121101.1755.002
    [15] 鲁程鹏, 束龙仓, 陈洵洪.  河床地形影响潜流交换作用的数值分析 . 水科学进展, 2012, 23(6): 789-795. doi: CNKI: 32.1309.P.20121101.1759.015
    [16] 李海明, 吴锦兰, 贾晓玉, 王博, 郑西来.  滨海含水介质胶体对垃圾渗滤液氨氮的吸附特征 . 水科学进展, 2008, 19(3): 339-344.
    [17] 朱兆洲, 刘丛强, 王中良, 王仕禄, 周志华, 李军.  龙感湖稀土元素的地球化学特征 . 水科学进展, 2006, 17(6): 785-789.
    [18] 刘建国, 王洪涛, 聂永丰.  多孔介质中溶质有效扩散系数预测的分形模型 . 水科学进展, 2004, 15(4): 458-462.
    [19] 王超, 顾斌杰.  非饱和土壤溶质迁移转化模型参数优化估算 . 水科学进展, 2002, 13(2): 184-190.
    [20] 吴吉春, 薛禹群, 谢春红, 张志辉.  含水层中考虑水—岩间阳离子交换的溶质运移方程 . 水科学进展, 1996, 7(2): 93-98.
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  16
  • PDF下载量:  1264
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-25
  • 刊出日期:  2008-03-25

河流中潜流交换研究进展

    基金项目:  国家杰出青年科学基金资助项目(50425926)
    作者简介:

    金光球(1979- ),男,安徽六安人,博士研究生,主要从事水生态环境研究.E-mail:jingq02@126.com

  • 中图分类号: TV131.3;G353.11

摘要: 河水和地下水交换——潜流交换对溶质和污染物的归宿起着重要作用。潜流交换机理主要包括泵吸交换和冲淤交换。泵吸交换是由于河床形态引起的水头梯度,这些水头梯度诱导了对流传输;冲淤交换发生是由于移动河床截留和释放孔隙水。潜流交换的主要影响因素包括:河道流量、河床水力传导性、河床形态、河道弯曲、河床不均匀和背景条件。还探讨了反应性溶质、胶体颗粒共存情况下潜流交换的规律。对潜流交换研究现存的主要问题及未来研究展望提出了看法。

English Abstract

金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293.
引用本文: 金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293.
JIN Guang-qiu, LI Ling. Advancement in the hyporheic exchange in rivers[J]. Advances in Water Science, 2008, 19(2): 285-293.
Citation: JIN Guang-qiu, LI Ling. Advancement in the hyporheic exchange in rivers[J]. Advances in Water Science, 2008, 19(2): 285-293.
参考文献 (50)

目录

    /

    返回文章
    返回