缓坡方程的有限元解法及应用
Finite element solution for mild-slope equation and its application
-
摘要: 利用有限元方法离散椭圆型缓坡方程,能适用于复杂区域,并很好地拟合不规则边界;采用改进共轭梯度法求解离散方程组,可以大大降低计算内存要求,提高计算效率。利用结合上述两种方法的模式对规划的日照港区水域进行了波浪数值计算,并将计算结果与物理模型试验值进行比较,结果表明:该模式能适用于较大区域的波浪场计算,并可以得到较好的计算结果。Abstract: The finite element method,which suits complex domain shapes well andfits the irregular boundary conveniently,is used to salve the elliptic mild slope equation in the model of this paper.And the modified conjugate-gradient method,which solves the linear system of equations efficiently and requires less memory,is used to solve the linear system of the mild slope equation.This model is tested with the laboratory measurements of Rizhao Port waters.The results show that the model could be used in relative large region and get ideal results.