Abstract:
A tsunami can mobilize a substantial amount of coastal sediments and change the coastal morphology considerably. A comprehensive numerical model is developed with the capability of modeling tsunami waves, including the effect of sediment transport and morphological changes. The numerical model includes a set of fully nonlinear and weekly dispersive Boussinesq equations and the sediment transport and morphological evolution modules. The weighted essentially non-oscillatory scheme (WENO) is used for the spatial discretization of morphological bed level equations. The Lax-Wendroff scheme and forward time backward space (FTBS) scheme are compared with WENO. The numerical model is validated using the available laboratory experimental data such as Synolakis, Kobayashi and Young. The result shows that the numerical model is capable of resolving the solitary wave propagate, breaking, run-up, rundown and scouring processes on the beach. The numerical model could be useful for the study of sediment transport under tsunami waves.