• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

复杂边界及实际地形上溃坝洪水流动过程模拟

夏军强, 王光谦, LIN Bin-liang, 谈广鸣

夏军强, 王光谦, LIN Bin-liang, 谈广鸣. 复杂边界及实际地形上溃坝洪水流动过程模拟[J]. 水科学进展, 2010, 21(3): 289-298.
引用本文: 夏军强, 王光谦, LIN Bin-liang, 谈广鸣. 复杂边界及实际地形上溃坝洪水流动过程模拟[J]. 水科学进展, 2010, 21(3): 289-298.
XIA Jun-qiang, WANG Guang-qian, LIN Bin-liang, TAN Guang-ming. Two-dimensional modelling of dam-break floods over actual terrain with complex geometries using a finite volume method[J]. Advances in Water Science, 2010, 21(3): 289-298.
Citation: XIA Jun-qiang, WANG Guang-qian, LIN Bin-liang, TAN Guang-ming. Two-dimensional modelling of dam-break floods over actual terrain with complex geometries using a finite volume method[J]. Advances in Water Science, 2010, 21(3): 289-298.

复杂边界及实际地形上溃坝洪水流动过程模拟

基金项目: 国家重点基础研究发展计划(973)资助项目(2007CB714106);教育部新世纪优秀人才支持计划资助项目(NECT-10-0619)
详细信息
    作者简介:

    夏军强(1974- ),男,浙江绍兴人,副研究员,博士,主要从事河流动力学方面的研究.E-mail:xiajq@tsinghua.edu.cn

  • 中图分类号: TV122.4

Two-dimensional modelling of dam-break floods over actual terrain with complex geometries using a finite volume method

Funds: The study is financially supported by the National Basic Research Program of China (No.2007CB714106) and the Program for New Century Excellent Talents in University(No.NECT-10-0619)
  • 摘要: 建立了基于无结构三角网格下采用有限体积法求解的二维水动力学模型,用于模拟溃坝洪水在复杂边界及实际地形上的流动过程。该模型采用Roe格式的近似Riemann解计算界面水流通量,结合空间方向的TVD-MUSCL格式及时间方向的预测-校正格式,可使模型在时空方向具有二阶计算精度。模型中引入最小水深概念,提出了有效的干湿界面处理方法。模拟了理想条件下溃坝水流过程,研究不同最小水深取值对干河床上洪水演进的影响,并用两组简单溃坝水流的水槽试验资料对模型进行验证。采用该模型模拟了实际溃坝洪水的流动过程,所得计算结果与实测资料及已有模型计算结果较为符合。
    Abstract: Based the total variation diminishing(TVD)finite volume method, a two-dimensional hydrodynamic model using unstructured triangularmeshes is developed formodelling dam-break flooding under actual terrain with complex geometries.Details include uses of the Roe's approximate Riemann solverwith the TVD-MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme as well as the procedure of predictor-corrector in time stepping, which can result in a secondrorder accurate elution for dam-break flows in both time and space.The moving boundaryproblem is resolved through the introduction of aminimum water depth concept that can efficiently treat the wetting and drying fronts during the model integration.The effectof a sing different values of the minimum water depth on the simulation of dam-break fbws in the dry river bed is exam fined.We find that the minimum water depth can significantly alter the propagation of flood waves.Model results are also compared to the analytical solution under the idealized conditions, as well as two sets of dam-break data collected from flume experiments.Lastly, the model is validated using a real dam-break case with complex geometric conditions.The model simulation compareswellwith the observations and the other studies.
  • [1] FRACCAROLLO L,TORO E F.Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems[J].IAHR Journal of Hydraulic Research,1995,33(6):843-864.
    [2] BRADFORD S F,SANDERS B F.Finite-volume model for shallow water flooding of arbitrary topography[J].ASCE Journal of Hydraulic Engineering,2002,128(3):289-298.
    [3] ZHOU J G,CAUSON D M,MINGHAM C G,et al.Numerical prediction of dam-break flows in general geometries with complex bed topography[J].ASCE Journal of Hydraulic Engineering,2004,130(4):332-340.
    [4] YOON T H,KANG S K.Finite volume model for two-dimensional shallow water flows on unstructured grids[J].ASCE Journal of Hydraulic Engineering,2004,130(7):678-688.
    [5] LIAO C B.wu M S,LIANG S J.Numerical simulation of a dam break for an actual river terrain environment[J].Hydrological Processes.2007.21:447460.
    [6] 谭维炎.计算浅水动力学:有限体积法的应用[M].北京:清华大学出版社,1998.(Tan Wei-yan.Shallow water hydrodynamics[M].Beijing:Tsinghua University press,1998.(in Chinese))
    [7] 史宏达,刘臻.溃坝水流数值模拟研究进展[J].水科学进展,2006,17(1):129-135.(SHI Hong-da,LIU Zhen.Review and progress of research in numerical simulation of dam-break water flow[J].Advances in Water Science,2006,17(1):129-135.(in Chinese))
    [8] 王立辉,胡四一.溃坝问题研究综述[J].水利水电科技进展,2007,27(1):80-85.(WANG Li-Hui,HU Si-yi.Study on dam failure-related problems[J].Advances in Science and Technology of Water Resources,2007,27(1):80-85.(in Chinese))
    [9] 张大伟,李丹勋,王兴奎.基于非结构网格的溃坝水流干湿变化过程数值模拟[J].水力发电学报,2008,27(5):98-102.(ZHANG Da-wei.LI Dan-xun,WANG Xing-kui.Numerical modeling of dam-break water flow with wetting and drying change based on unstructured grids[J].Journal of Hydroelectric Engineering,2008,27(5):98-102.(in Chinese)).
    [10] ZHAO D H,SHEN H W,LAI J S,et al.Approximate Riemann solvers in FVM for 2D hydraulic shock wave modelling[J].ASCE Journal of Hydraulical Engineering,1996,122(12):692-702.
    [11] BRUFAU P,GARCIA-NAVARRO P,VAZQUEZ-CENDON M E.Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography[J].International Journal for Numerical Methods in Fluids,2004,45:1047-1082.
    [12] SLEIGH P A,GASKELL P H,BERZINA M,et al.An unstructured finite-volume algorithm for predicting flow in rivers and estuaries[J].Computers and Fluids,1998,27(4):479-508.
    [13] GODUNOV S K.A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations[R].Matemsticheskly Sboraik 47:US Joint Publications Research Service,1959.
    [14] WANG J W,LIU R X.A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems[J].Mathematics and Computers in Simulation,2000,53:171-184.
    [15] ROE P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43:357-372.
    [16] VAN LEER B.Towards the ultimate conservative difference scheme:V A second order sequel to Godunov's method[J].Joumal of Computational Physics,1979,32:101-136.
    [17] ROE P L,BAINES M J.Algorithms for advection and shock problems[C]//Viviand H.Proceedings of the Fourth GAMM Conference on Numerical Methods in Fluid Mechanics.Braunschweig:Vieweg,1981,281-290.
    [18] CALEFFI V,VALIANI A,ZANNI A.Finite volume method for simulating extreme flood events in natural channels[J].IAHR Jourhal of Hydraulic Research,2003,41(2):167-177.
    [19] FALCONER R A,CHEN Y.An improved representation of flooding and drying and wind stress effects in a 2D tidal numerical model[J].Proceedings of the Institution of Civil Engineers,1991,2:659-672.
    [20] STOKER J J.Water waves:Pure and applied mathematics[M].New York:Interscience Publishers,1957.
    [21] HIVER J M.Adverse-Slope and Slope(bump)[C]//SOARES-FRAZAO S,MORRIS M,ZECH Y.Conceded Action on Dam Break Modelling,Louvain-la-Neuve:Universit(e) catholique de Louvain,Civil Engineering Department,Hydraulics Division,Belgium,2000.
    [22] VALIANI A,CALEFFI V,ZANNI A.Case Study:Malpasset dam-break simulation using a two-dimensional finite volume method[J].ASCE Journal of Hydraulical Engineering,2002,128(5):460-472.
计量
  • 文章访问数:  181
  • HTML全文浏览量:  37
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-10
  • 刊出日期:  2010-05-24

目录

    /

    返回文章
    返回