• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

浅水流动计算中—阶有限体积法Osher格式的实现

谭维炎, 胡四一

谭维炎, 胡四一. 浅水流动计算中—阶有限体积法Osher格式的实现[J]. 水科学进展, 1994, 5(4): 262-270.
引用本文: 谭维炎, 胡四一. 浅水流动计算中—阶有限体积法Osher格式的实现[J]. 水科学进展, 1994, 5(4): 262-270.
Tan Weiyan, Hu Siyi. Implementation of First-order Finite-volume Osher Scheme in Shallow-water Flow Computation[J]. Advances in Water Science, 1994, 5(4): 262-270.
Citation: Tan Weiyan, Hu Siyi. Implementation of First-order Finite-volume Osher Scheme in Shallow-water Flow Computation[J]. Advances in Water Science, 1994, 5(4): 262-270.

浅水流动计算中—阶有限体积法Osher格式的实现

详细信息
  • 中图分类号: TV133.2

Implementation of First-order Finite-volume Osher Scheme in Shallow-water Flow Computation

  • 摘要: 近年来,一阶有限体积法Osher格式已在二维浅水明流的一批模型问题和应用实例中获得成功。本文首次讨论其算法实现的种种问题。核心是建立单元水力模型-阶梯流,在数学上可用一类特殊的黎曼问题来描述。将该问题化作气体动力学中的黎曼问题近似求解,然后对结果加以校正。还在理论分析和数值试验的基础上详细讨论了各种外部边界条件、内部边界和动边界的处理,构成完整的算法。
    Abstract: In recent years, the first-order finite-volume Osher scheme has been applied with success to a dozen model problems and practical cases involving two-dimensional shallow-water open flows. This paper discusses for the first time relevant techniques in its algorithmic implementation. A kernel lies in the setup of a cell hydraulic model-step flow, which can be described mathematically by a special type of Riemann problem. It can be solved approximately by reducing to a standard Riemann problem in gas dynmaics, and correcting the results accordingly. Based on theoretical analysis and numerical tests, a detailed description is also given about various types of outer, inner and moving boundary treatments, so that a complete and practical algorithm has been formed.
  • [1] 谭维炎, 胡四一二维浅水流动的一种普适的高性能格式.水科学进展.1991, 2(3):154-161
    [2] 谭维炎, 胡四一计算浅水动力学的新方向水科学进展.1992, 3(4); 310-318
    [3] H Decomick, et al.Consistent Boundary Conditions for CeV-centered Upwind. Finite Volume Solvers: K W Morton et al. eds. Numerical Methods for Fluid Dynamics. Clarendon, 1988: 464-470
计量
  • 文章访问数:  335
  • HTML全文浏览量:  52
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  1993-08-19
  • 修回日期:  1994-08-07
  • 刊出日期:  1994-10-24

目录

    /

    返回文章
    返回