钱塘江口涌潮的二维数值模拟

谭维炎, 胡四一, 韩曾萃, 潘存鸿, 楼越平, 毛喜中

谭维炎, 胡四一, 韩曾萃, 潘存鸿, 楼越平, 毛喜中. 钱塘江口涌潮的二维数值模拟[J]. 水科学进展, 1995, 6(2): 83-93.
引用本文: 谭维炎, 胡四一, 韩曾萃, 潘存鸿, 楼越平, 毛喜中. 钱塘江口涌潮的二维数值模拟[J]. 水科学进展, 1995, 6(2): 83-93.
Tan Weiyan, Hu Siyi, Han Zengcui, Pan Cunhong, Lou Yuping, Mao Xizhong. Two-Dimensional Numerical Modelling of Bores in the Qiantang Estuary[J]. Advances in Water Science, 1995, 6(2): 83-93.
Citation: Tan Weiyan, Hu Siyi, Han Zengcui, Pan Cunhong, Lou Yuping, Mao Xizhong. Two-Dimensional Numerical Modelling of Bores in the Qiantang Estuary[J]. Advances in Water Science, 1995, 6(2): 83-93.

钱塘江口涌潮的二维数值模拟

详细信息
  • 中图分类号: 0242.1;P731.23

Two-Dimensional Numerical Modelling of Bores in the Qiantang Estuary

  • 摘要: 应用二维有限体积法、Osher格式及间断拟合法,计算了钱塘江河口涌潮产生、发展到消亡的全过程。该算法能保证水量和动量守恒,且能适应水深巨大变化和动边界。根据钱塘江涌潮的特点,可将其合理概化为一线潮。在网格尺寸较大情况下,计算的一线潮仍保持高分辨率,能准确满足水力学间断条件,且计算量小,可以在微机上实现。在对某实测半日小潮进行率定后,对随后的大潮进行了验证计算,涌潮的主要特征(如涌潮高度、移速、水位和流场等)与实测资料符合良好,证实了模型的合理性和模拟能力。
    Abstract: Histories of Gores in the Qiantang Estuary,are modelled by using a two-dimensional finite-volume,Osher scheme,and a discontinuity-fitting method. The algorithm ensures mass and momentum conservation,and can be applied to cases with irregular morphography,and moving boundaries. Based on a simplification a line-bore,the modelling can be done on a coarse mesh by a microcomputer,After having calibrated against a typical semi-diurnal tide,the model is used to predict the succeeding semi-diurnal tide for validating its reasonability and applicability.
  • [1] 钱宁,张仁,周志德等.河床演变学.北京:科学出版社,1987. 296-302.
    [2] 周胜,倪浩清,赵永明等.钱塘江水下防护工程的研究与实践.水利学报.1992, (1): 20-30.
    [3] 赵雪华.钱塘江涌潮的一维数学模型.水利学报.1985, (1): 50-54.
    [4] 谭维炎,胡四一.二维浅水流动的一种普适的高性能格式(有限体积Ocher格式).水科学进展.1991,2 (3):154-161.
    [5] 谭维炎,胡四一浅水流动计算中一阶有限体积法Osher格式的实现.水科学进展.1994, 5(4):262-270.
    [6] 椿东一郎.水力学(I).北京:高等教育出版社,1982. 48-52.
    [7] Whitham W B. Linear and nonlinear waves. Wiley, 1974. 458-459.
    [8] 李文勋.水力学中的微分方程及其应用.上海:上海科学技术出版社,1982. 105-108.
计量
  • 文章访问数:  351
  • HTML全文浏览量:  55
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  1994-05-19
  • 刊出日期:  1995-04-24

目录

    /

    返回文章
    返回