Two-Dimensional Numerical Modelling of Bores in the Qiantang Estuary
-
摘要: 应用二维有限体积法、Osher格式及间断拟合法,计算了钱塘江河口涌潮产生、发展到消亡的全过程。该算法能保证水量和动量守恒,且能适应水深巨大变化和动边界。根据钱塘江涌潮的特点,可将其合理概化为一线潮。在网格尺寸较大情况下,计算的一线潮仍保持高分辨率,能准确满足水力学间断条件,且计算量小,可以在微机上实现。在对某实测半日小潮进行率定后,对随后的大潮进行了验证计算,涌潮的主要特征(如涌潮高度、移速、水位和流场等)与实测资料符合良好,证实了模型的合理性和模拟能力。Abstract: Histories of Gores in the Qiantang Estuary,are modelled by using a two-dimensional finite-volume,Osher scheme,and a discontinuity-fitting method. The algorithm ensures mass and momentum conservation,and can be applied to cases with irregular morphography,and moving boundaries. Based on a simplification a line-bore,the modelling can be done on a coarse mesh by a microcomputer,After having calibrated against a typical semi-diurnal tide,the model is used to predict the succeeding semi-diurnal tide for validating its reasonability and applicability.
-
-
[1] 钱宁,张仁,周志德等.河床演变学.北京:科学出版社,1987. 296-302. [2] 周胜,倪浩清,赵永明等.钱塘江水下防护工程的研究与实践.水利学报.1992, (1): 20-30. [3] 赵雪华.钱塘江涌潮的一维数学模型.水利学报.1985, (1): 50-54. [4] 谭维炎,胡四一.二维浅水流动的一种普适的高性能格式(有限体积Ocher格式).水科学进展.1991,2 (3):154-161. [5] 谭维炎,胡四一浅水流动计算中一阶有限体积法Osher格式的实现.水科学进展.1994, 5(4):262-270. [6] 椿东一郎.水力学(I).北京:高等教育出版社,1982. 48-52. [7] Whitham W B. Linear and nonlinear waves. Wiley, 1974. 458-459. [8] 李文勋.水力学中的微分方程及其应用.上海:上海科学技术出版社,1982. 105-108.
计量
- 文章访问数: 351
- HTML全文浏览量: 55
- PDF下载量: 566