• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

一维畦灌施肥地表水流与溶质运移耦合模型——Ⅱ.模型验证

章少辉, 许迪, 李益农, 白美健

章少辉, 许迪, 李益农, 白美健. 一维畦灌施肥地表水流与溶质运移耦合模型——Ⅱ.模型验证[J]. 水科学进展, 2011, 22(2): 196-202.
引用本文: 章少辉, 许迪, 李益农, 白美健. 一维畦灌施肥地表水流与溶质运移耦合模型——Ⅱ.模型验证[J]. 水科学进展, 2011, 22(2): 196-202.
ZHANG Shao-hui, XU Di, LI Yi-nong, BAI Mei-jian. One-dimensional model for coupling surface water flow with solute transport for border fertigation: Ⅱ. Model verification[J]. Advances in Water Science, 2011, 22(2): 196-202.
Citation: ZHANG Shao-hui, XU Di, LI Yi-nong, BAI Mei-jian. One-dimensional model for coupling surface water flow with solute transport for border fertigation: Ⅱ. Model verification[J]. Advances in Water Science, 2011, 22(2): 196-202.

一维畦灌施肥地表水流与溶质运移耦合模型——Ⅱ.模型验证

基金项目: 国家高技术研究发展计划(863)资助项目(2006AA100210);国家自然科学基金资助项目(50909100);中国水利水电科学研究院科研专项项目(节集1038)
详细信息
    作者简介:

    章少辉(1977- ),男,汉,河北石家庄人,工程师,博士研究生,主要从事田间节水灌溉技术研究.E-mail:zhangsh@iwhr.com

  • 中图分类号: O351.2;S275.3

One-dimensional model for coupling surface water flow with solute transport for border fertigation: Ⅱ. Model verification

Funds: The study is financially supported by the National High Technology Research and Development Program of China(No.2006AA100210) and the National Natural Science Foundation of China(No.50909100).
  • 摘要: 基于典型畦灌施肥试验观测结果及其模拟结果,对比分析利用混合数值解法和Roe有限体积法分别求解一维畦灌施肥地表水流与溶质运移过程控制方程在数值稳定性与收敛性、计算精度与效率上的差异,验证混合数值解法的计算性能与模拟效果.结果表明,混合数值解法比Roe有限体积法表现出更佳的数值稳定性和收敛性,产生的水平衡误差和平均相对误差较低,同样度量环境下的计算效率提高2.5倍以上.基于混合数值解法的一维畦灌施肥地表水流与溶质运移耦合模拟方法可明显增强数值计算的稳定性和收敛性,有效提高计算精度和效率,为开展畦灌施肥系统设计与评价提供了有效的数值模拟工具.
    Abstract: In this accompanying study,we compare and analyze the differences in stability,convergence,precision and efficiency resulting from the use of two methods in the solution of the one-dimensional model for coupling surface water flow with solute transport for border fertigation(1-DMCSWFSTBF).The first method is the hybrid numerical method,while the second one is the Roe finite volume method.Results show that the hybrid numerical method produces better numerical stability and convergence compared to the Roe finite volume method.Under the same circumstances of measurement,the former method is 2.5 times more computationally effective than the latter one,and the corresponding average relative error and water balance error are also improved.Thus,1-DMCSWFSTBF based on the hybrid numerical method can significantly increase the computational stability and convergence,and can effectively improve the computational precision and efficiency.The model can be used as an effective simulation tool for the design and performance evaluation of border fertigation systems.
  • [1] MURILLO J,GARCIA-NAVARRO P,BURGUETE J.Analysis of a second-order upwind method for the simulation of solute transport in 2D shallow water flow[J].International Journal for Numerical Method in Fluids,2008,56(4):661-686.
    [2] 闫超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2007:139-190.(YAN Chao.Computational fluid dynamics method and application[M].Beijing:Beijing University of Aeronautics Astronautics Press,2007:139-190.(in Chinese))
    [3] 章少辉,许迪,李益农.一维畦灌施肥地表水流与溶质运移耦合模型:Ⅰ.模型构建[J].水科学进展,2011,22(2):189-195.(ZHANG Shao-hui,XU Di,LI Yi-nong.One-dimensional coupled model of surface water and solute transport for border fertigation:I:Model solution[J].Advances in Water Science,2011,22(2):189-195.(in Chinese))
    [4] ABDELLAOUI A,TALOUIZTE A.Effect of previous nitrogen starvation on NO2- and NH4+ uptake and assimilation associated with the endogenous soluble carbohydrate utilization in Moroccan wheat seedlings[J].Journal of Plant Nutrition,2001,24(12):1995-2007.
    [5] 白美健,许迪,李益农,等.地面灌溉土壤入渗参数时空变异性试验研究[J].水土保持学报,2005,19(5):120-123.(BAI Mei-jian,XU Di,LI Yi-nong,et al.Evaluating spatial and temporal variability of infiltration on field-scale under surface irrigation[J].Journal of Soil and Water Conservation,2005,19(5):120-123.(in Chinese))
    [6] ZERIHUN D,FUMAN A,WARRICK A W,et al.Couple surface-subsurface solute transport model for irrigation borders and basins:Ⅱ:Model evaluation[J].Journal of Irrigation and Drainage Engineering,2005,131(5):407-419.
    [7] LIOU M S.A sequel to AUSM:PartⅡ:AUSM+-up for all speeds[J].Journal of Computational Physics,2006,214:137-170.
    [8] STRELKOFF T S,TAMIMI A H,CLEMMENS A J.Two-dimensional basin flow with irregular bottom configuration[J].Journal of Irrigation and Drainage Engineering,2003,129(6):391-401.
    [9] SHAO Song-dong,EDMOND Y M L.Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J].Advances in Water Resources,2003,26(2):787-800.
计量
  • 文章访问数:  94
  • HTML全文浏览量:  20
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-21
  • 刊出日期:  2011-03-24

目录

    /

    返回文章
    返回