确定河流纵向离散系数的相关系数极值法

The Correlation Coefficient Extreme Value Method to Determine the Dispersion Parameters of River

  • 摘要: 将描述一维瞬时投放示踪剂情况下的水团示踪试验的解析表达式两端同时取对数,得到一直线方程。该方程的因变量Y中含有试验数据ct,自变量X中含有试验数据tx和待求参数u,直线常数中含有待求参数DA。根据u的取值应使YX间的相关系数达到极值的原理,推导出了计算河流平均流速u的公式。在计算出u值后,就可以计算出相应不同时间的X值,然后对YX数据进行一元线性回归计算,可以计算出直线常数项,从而便可以计算出DA值。

     

    Abstract: By logarithmic tran sformation of the analytic solutions expressing one-dimension water masstracer dispersion test with instant injection of tracer,a linea requation,whose independent variable X includes test data t and x,u with unknown value,dependent Y includes the test data c and t,and the linear constants include the long itudinal dispersion coefficient D,was derived.A ccording to the p inciple that the suitab levalue of u should make the value of correlation coefficient between Y and X extreme,the equation computing the value of u was derived.With known the value of u,the values of X correspond ingto different observation time may be computed.Then the linear constants may be determined by the method of linear regression to analyze the data of Y-X,and finally the dispersion parameters can be estimated.

     

/

返回文章
返回