Data Analyzing Method in Indoor Dispersion Test under the Condition of Equilibrium Adsorption
-
摘要: 针对现有分析室内一维砂柱弥散试验数据,确定多孔介质纵向弥散度的方法,在考虑介质对示踪剂的吸附作用的情况下不能应用的问题,对描述一维、稳定渗流与连续定浓度注入示踪剂的砂柱弥散试验的近似解析解进行反函数变换,利用相关系数极值法的原理,建立了在多孔介质与示踪剂间为均衡吸附条件下,可计算多孔介质纵向弥散度与阻滞系数的方法.而且,这种方法在多孔介质的有效孔隙率为已知的情况下,还可计算出多孔介质对示踪剂的吸附系数.Abstract: To overcome the shortage of current methods which may not be applied in the case of taking adsorption into consideration,a suitable transformation is conducted on the approximate analytical solution which describes one-dimension indoor sandy column dispersion test in the condition of constant injecting concentration and steady seepage,and on the base of this,an analyzing data method is established according to the extreme principle of correlation coefficient.Thia method may be applied to estimate the values of longitudinal dispersivity,retarding coefficient and equilibrium adsorption coefficient if the effective porosity of porous medium is known.
-
Keywords:
- dispersion test /
- equilibrium adsorption /
- parameter estimation
-
-
[1] 陈崇希,李国敏.地下水溶质运移理论及模型[M].武汉:中国地质大学出版社.1996.55-58. [2] 郭建青,钱会.分析一维砂柱弥散试验数据的反函数法[J].水利学报,1999,(2):43-48. [3] Sidauruk A,H-D Cheng,D Ouazar.Groundwater contaminant and transport parameter identification by correlation coefficient optimization[J].Groundwater,1998,36(2):208-214. [4] W.金士博,杨汝均.水环境数学模型[M].北京:中国建筑出版社,1987.346-348. [5] 汪荣鑫.数理统计[M].西安:西安交通大学出版社,1986.174-177. [6] 薛禹群.地下水动力原理[M].北京:地质出版社,1986.15-20. [7] 徐士良.QBASIC常用算法程序集[M].北京:清华大学出版社,1997.381-383.
计量
- 文章访问数: 237
- HTML全文浏览量: 24
- PDF下载量: 559