杨具瑞, 方铎, 何文社, 刘兴年. 推移质输沙率的非线性研究[J]. 水科学进展, 2003, 14(1): 36-40.
引用本文: 杨具瑞, 方铎, 何文社, 刘兴年. 推移质输沙率的非线性研究[J]. 水科学进展, 2003, 14(1): 36-40.
YANG Ju-rui, FANG Duo, HE Wen-she, LIU Xing-nian. Nonlinear study on transport rate of bedload[J]. Advances in Water Science, 2003, 14(1): 36-40.
Citation: YANG Ju-rui, FANG Duo, HE Wen-she, LIU Xing-nian. Nonlinear study on transport rate of bedload[J]. Advances in Water Science, 2003, 14(1): 36-40.

推移质输沙率的非线性研究

Nonlinear study on transport rate of bedload

  • 摘要: 目的是从非线性科学角度探讨泥沙运动的规律。通过分析非均匀沙起动的影响因素得到了尖点突变模型的状态变量和控制变量,建立了能描述推移质运动的尖点突变模型。在尖点突变标准方程的基础上,应用尖点突变理论的坐标变换和拓扑变换,导出了输沙强度和水流参数的函数关系式。将输沙强度作为状态变量,水流参数和床沙密实系数作为控制变量。用水槽实验资料和其它推移质输沙率公式进行了对比验证。验证结果表明,计算值与其它推移质输沙率公式和水槽实验结果基本相符,误差一般在-90%~80%之间。说明建立的推移质输沙率公式是合理的,能够反映泥沙的起动和输移规律。

     

    Abstract: The cusp-catastrophe theory of nonlinear science is applied for studying transport rate of bed load in this paper.By means of analyzing the factors effecting incipient motion of sediment, the state variable and the bound variable in cusp-catastrophe model are obtained, and the cusp-catastrophe model being able to reflect the transport of bed load is built Based on the standard equation of the cusp-catastrophe, the function between the bed load intensity Φ and Shields number Θ is derived by using coordinate transform and topology transform.The bed load intensity Φ is regarded as the state variable, and Shields number and coefficient of condensing of bed material m are regarded as bound variable in cusp-catastrophe model.Flume experiment data and other formulas are used to verify the cusp-catastrophe model, it indicates that the results calculated from the cusp-catastrophe formula agree well with the flume experiment data and the results calculated by other formulas.This indicates that the cusp-catastrophe formula derived here is reasonable, and the results can reflect the characterist ics of transport of non-uniform sediment.The purpose of this paper is to explore the incipient motion and transport laws of non-uniform sediment from the viewpoint of nonlinear theoty.

     

/

返回文章
返回