• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤水力性质确定方法研究进展

徐绍辉 刘建立

徐绍辉, 刘建立. 土壤水力性质确定方法研究进展[J]. 水科学进展, 2003, 14(4): 494-501.
引用本文: 徐绍辉, 刘建立. 土壤水力性质确定方法研究进展[J]. 水科学进展, 2003, 14(4): 494-501.
XU Shao-hui, LIU Jian-li. Advances in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501.
Citation: XU Shao-hui, LIU Jian-li. Advances in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501.

土壤水力性质确定方法研究进展

基金项目: 国家自然科学基金资助项目(49971041);中国科学院南京土壤所所长资助基金项目(ISSDF0004);国家重点基础研究发展规划项目(G1999011803)
详细信息
    作者简介:

    徐绍辉(1963- ),男,山东即墨人,中国科学院南京土壤研究所副研究员,博士,主要从事地下环境中水流和溶质运移的数值模拟研究.

  • 中图分类号: P641.2;G353.11

Advances in approaches for determining unsaturated soil hydraulic properties

Funds: The project is supported by National Natural Science Foundation of China(No.49971041).
  • 摘要: 介绍了确定土壤水力性质的各种直接方法(包括实验室方法和田间方法两大类)和间接方法如土壤转换函数方法、分形方法、形态学方法、数值反演方法和经验公式法等的研究进展和现状,指出了它们各自的优点和存在的不足.认为要不断地引入新的实验技术和改进测定设备,并把估计土壤水力性质的各种理论方法及实验信息有机地结合起来进行综合研究,以扩大它们的适用范围和提高预测精度.
  • [1] 贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.620.
    [2] Klute A.Laboratory measurement of hydraulic conductivity of unsaturated soil[Al,Black C A.(ed.) Methods of Soil Analysis[C],Am Soc Agron,Madison Wisc,1965,253-261.
    [3] Rose C W,Stern W R,Drummond J E.Determination of hydraulic conductivity as a function of depth and water content for soil in situ[J].Australia Journal of Soil Research,1965,3:1-9.
    [4] Watson K K.An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous material[J].Water Resources Research,1966,2:709-715.
    [5] Wind G P.Capillary conductivity data estimated by a simple method[A].Rijtema P E,Wassink H.(ed.) Water in the unsaturated zone[C].IASH Gentbrugge/UNESCO Paris,1968,181-191.
    [6] Bouma J,Belmans C,Dekker L W,et al.Assessing the suitability of soils with macropores for subsurface liquid waste disposal[J].Journal of Environment Quality,1983,12:305-311.
    [7] Kool J B,Parker J C,van Genuchten M Th.Determining soil hydraulic properties for one-step outflow experiments by parameter estimation:Ⅰ.Theory and numerical studies[J].Soil Science Society of America Journal,1985,49:1348-1354.
    [8] Parker J C,Kool J B,van Genuchten M Th.Determining soil hydraulic properties for one-step outflow experiments by parameter estimation:Ⅱ.Experimental studies[J].Soil Science Society of America Journal,1985,49:1 354-1 359.
    [9] Dirken C.Unsaturated hydraulic conductivity[A].Smith K A and Mullins C E.Soil Analysis:Physical Methods[C].New York:Marcel Dekker,1991.209-269.
    [10] Mohanty B P,Kanwar R S,Everts C J.Comparison of saturated hydraulic conductivity measurement methods for a glacial till soil[J].Soil Science Society of America Journal,1994,58:672-677.
    [11] Gupta S C,Larson W E.Estimating soil water retention characteristics from particle size distribution,organic matter percent and bulk density[J].Water Resources Research,1979,15:1 633-1 635.
    [12] Rawls W J,Brake nsiek D L,Saxton K E.Estimation of soil water properties[J].Trans ASAE,1982,25:1 316-1 320,1 328.
    [13] Cosby B J,Hornborger G M,Clapp R B,et al.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research,1984,20:682-690.
    [14] Saxton K E,Rawls W J,Romberger J S,et al.Estimating generalized soil-water characteristics from texture[J].Soil Science Society of America Journal,1986,50:1 031-1 036.
    [15] Wosten J H M,van Genuchten M Th.Using texture and other soil properties to predict the unsaturated soil hydraulic functions[J].Soil Science Society of America Journal,1988,52:1762-1 770.
    [16] Vereecken H,Maes J,Feyen J,et al.Estimating the soil water moisture retention characteristic from texture,bulk density,and carbon content[J].Soil Science,1989,148:389-403.
    [17] Arya L M,Paris J F.A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J].Soil Science Society of America Journal,1981,45:1 023-1 030.
    [18] Kern J S.Evaluation of soil water retention models based on basic soil physical properties[J].Soil Science Society of America Journal,1995,59:1 134-1 141.
    [19] Pachepsky Y A,Timlin D,Varallyay G.Artificial neural networks to estimate soil water retention from easily measurable data[J].Soil Science Society of America Journal,1996,60:727-733.
    [20] Tamari S,Wosten J H M,Ruiz-Suarez J C.Testing an artificial neural network for predicting soil hydraulic conductivity[J].Soil Science Society of America Journal,1996,60:1732-1741.
    [21] Schaap M G,Bonten W.Modeling water retention curves of sandy soils using neural networks[J].Water Resources Research,1996,32:3033-3040.
    [22] Schaap M G,Leij F J.Using neural networks to predict soil water retention and soil hydraulic conductivity[J].Soil and Tillage Research,1998,47:37-42.
    [23] Minasny B,McBratney A B,Bristow K L.Comparison of different approaches to the development of pedotransfer functions for water-retention curves[J].Geoderma,1999,93:225-253.
    [24] Mandelbrot B B.The fractal geometry of nature[M].San Francisco:W H Freeman,1983.468.
    [25] Tyler S W,Wheatcraft S W.Application of fractal mathematics to soil water retention estimation[J].Soil Science Society of America Journal,1989,53:987-996.
    [26] Tyler S W,Wheatcraft S W.Fractal processes in soil water retention[J].Water Resources Research,1990,26:1047-1 056.
    [27] Rieu M,Sposito G.Fractal fragmentation soil porosity and soil water properties I Theory[J].Soil Scienoe Society of America Journal,1991,55:1 231-1 238.
    [28] Crawford J W,Matsui N,Young I M.The relation between the moisture release curve and the structure of soil[J].European Journal of Soil Science,1995,46:369-375.
    [29] Pachepsky Y A,Shcherbakov R A,Korsunskaya L P.Scaling of soil water retention using a fractal model[J].Soil Science,1995,159:99-104.
    [30] Perfect E,McLaughlin N B,Kay B D,et al.An improved fractal equation for the soil water retention curve[J].Water Resources Research,1996,32:281-287.
    [31] Perfect E.Estimating soil mass fractal dimensions from water retention curves[J].Geoderma,1999,88:221-231.
    [32] Kravchenko A,Zhang R.Estimating the soil water retention from particle-sise distributions:A fractal approach[J].Soil Science,1998,163:171-179.
    [33] Perrier E,Rieu M,Sposito G,et al.Models of water retention curve for soils with a fractal pore size distribution[J].Water Resources Researoh,1996,32:3025-3031.
    [34] Toledo P G,Novy R A,Davis H T,et al.Hydraulic conductivity of porous media at low water content[J].Soil Soience Society of America Journal,1990,54:673-679.
    [35] Rawls W J,Brakensiek D L,Logsdon S D.Predicting saturated hydraulic conductivity utilizing fractal principles[J].Soil Science Society of America Journal,1993,57:1 193-1 197.
    [36] 刘建立,徐绍辉.根据土壤基本物理性质估计水分特征曲线:分形模型的应用[J].土壤学报,2003,40(1):46-52.
    [37] 李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22:1-10
    [38] 詹卫华,黄冠华.土壤水力特性分形特征的研究进展[J].水科学进展,2000,11(4):457-462.
    [39] 刘建国,聂永丰.非饱和土壤水力参数预测的分形模型[J].水科学进展,2001,12(1):98-106.
    [40] Fatt Ⅰ.The network model of porous media.Ⅰ.Capillary characteristics[J].Petroleum Transactions,AIME,1956a,207:144-159.
    [41] Fatt Ⅰ.The network model of porous media.Ⅱ.Dynamic properties of a single size tube network[J].Petroleum Transactions,AIME,1956b,207:160-163.
    [42] Fatt Ⅰ.The network model of porous media.Ⅲ.Dynamic properties of networks with tube radius distribution[J].Petroleum Transactions,AIME,1956b,207:164-181.
    [43] Chatzis,I,Dullien F A L.Modeling pore structure by 2-D and 3-D networks with application to sandstone[J].Journal of Canadian Petroleum Technology,1977,16:97-108.
    [44] Chandler R,Koplik J,Lerman K.Capillary displacement and percolation in porous media[J].Journal of Fluid Mechanics,1982,119:249-267.
    [45] Jerauld G R,Salter S J.The effect of pore structure on hysteresis in relative permeability and capillary pressure:pore level modeling[J].Transport in Porous Media,1990,5:103-151.
    [46] Ferrand L A,Celia M A.The effect of heterogeneity on the drainage capillary pressure-saturation relation[J].Water Resources Research,1992,28:859-870.
    [47] Friedman S P,Seaton N A.On the transport properties of anisotropic networks of capillaries[J].Water Resources Research,1996,32:339-347.
    [48] Wise W R.A new insight on pore structure and permeability[J].Water Resources Research,1992,28:189-198.
    [49] Rajarama H,Ferrand L A,Celia M A.Prediction of relative permeabilities for unconsolidated soils using pore-scale network models[J].Water Resources Research,1997,33:43-52.
    [50] Ewing R P,Gupta S C.Modeling percolation properties of random using a domain network[J].Water Resources Research,1993,29:3169-3 178.
    [51] Vogel H J,Kretzschmar A.Topological characterization of pore space in soil-sample preparation and digital image-processing[J].Geoderma,1996,73:23-28.
    [52] Vogel H J.Morphological determination of pore connectivity as a function of pore size using serial sections[J].European Journal Soil Science,1997,48:365-377.
    [53] Vogel H J,Roth K.A new approach for determining effective soil hydraulic functions[J].European Journal Soil Science,1998,49:547-556.
    [54] Vogel H J,Roth K.Quantitative morphology and network representation of soil pore structure[J].Advances in Water Resources,2001,24:233-242.
    [55] Roth K,Vogel H J,Kasteel R.The scaleway:A conceptual framework for upscaling soil properties[A].Feyen J,Wiyo K.(ed.) Modeling of Transport Processes in Soils[C].Wageningen:Wageningen Press,1999.477-490.
    [56] Kool J B,Parker J C.Analysis of the inverse problem for transient unsaturated flow[J].Water Resources Research,1988,24:817-830.
    [57] Toorman A F,Wierenga P J,Hills R G.Parameter estimation of soil hydraulic properties from one-step outflow data[J].Water Resources Research,1992,28:3021-3028.
    [58] van Dam J C,Stricker J N M,Droogers P.Inverse method for determining soil hydraulic functions from multi-step outflow experiments[J].Soil Science Society of America Journal,1994,58:647-652.
    [59] Eching S O,Hopmans J W.Optimization of hydraulic conductivity from transient outflow and soil water pressure data[J].Soil Science Society of America Journal,1993,57:1 167-1 175.
    [60] Eching S O,Hopmans J W,Wendroth O.Unsaturated hydraulic conductivity from transient multi-step outflow and soil water pressure data[J].Soil Soience Society of America Journal,1994,58:687-695.
    [61] Inoue M,Simunek J,Hopmans J W,et al.In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique[J].Water Resources Research,1998,34:1 035-1 050.
    [62] Brooks R H,Corey A T.Hydraulic properties of porous media[M].Colorado State University,Fort Collins,Colorado,1964.27.
    [63] Gardner W R.Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table[J ].Soil Science,1958,85:228-232.
    [64] Gardner W R,Hillel D,Benyamini Y.Post irrigation movement of soil water:Ⅰ.Redistribution[J].Water Resources Research,1970a,6:851-861.
    [65] Gardner W R,Hillel D,Benyamini Y.Post irrigation movement of soil water:] .Simultaneous redistribution and evaporation[J].Water Resources Research,1970b,6:1 148-1 153.
    [66] Campbell G S.A simple method for determining unsaturated conductivity from moisture retention data[J].Soil Science,1974,117:311-314.
    [67] van Genuchten M Th.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44:892-898.
    [68] Russo D.Determining soil hydraulic properties by parameter estimation:on the selection of a model for the hydraulic properties[J].Water Resources Research,1988,24,453-459.
    [69] van Genuchten M Th,Leij F J,Yates S R.The RETC code for quantifying the hydraulic functions of unsaturated soils[Z].USEPA Report 600/2-91/065.U S Environmental Protection Agency,Ada,Oklahoma,1991,93.
    [70] 邵明安.根据土壤水分再分布过程确定土壤导水参数[J].中国科学院/水利部水土保持所集刊,1985,2:45-53.
    [71] 邵明安.根据土壤水分特征曲线推求导水参数[J].中国科学院/水利部水土保持所集刊,1991,13.
    [72] 邵明安,王全九,Horton R.推求土壤水分运动参数的简单入渗法:Ⅰ.理论分析[J].土壤学报,2000,37(1):1-8.
    [73] 邵明安,王全九,Horton R.推求土壤水分运动参数的简单入渗法:Ⅱ.实验验证[J].土壤学报,2000,37(2):217-224.
    [74] 徐绍辉,张佳宝,刘建立.表征土壤水分持留曲线的几种模型的适应性研究[J].土壤学报,2002,39(4):498-504.
  • [1] 吕玉香, 胡伟, 杨琰.  岩溶关键带水循环过程研究进展 . 水科学进展, 2019, 30(1): 123-138. doi: 10.14042/j.cnki.32.1309.2019.01.013
    [2] 金菊良, 陈梦璐, 郦建强, 张礼兵, 吴成国.  水资源承载力预警研究进展 . 水科学进展, 2018, 29(4): 583-596. doi: 10.14042/j.cnki.32.1309.2018.04.015
    [3] 管大为, 严以新, 郑金海, Bruce MELVILLE, Lu WANG.  矮堰基础冲刷研究进展 . 水科学进展, 2017, 28(2): 311-318. doi: 10.14042/j.cnki.32.1309.2017.02.017
    [4] 马爱兴, 陆彦, 陆永军, 曹民雄.  明渠非恒定流流速分布及推移质运动研究进展 . 水科学进展, 2012, 23(1): 134-142. doi: CNKI:32.1309.P.20120104.2014.013
    [5] 单楠, 阮晓红, 冯杰.  水生态屏障适宜宽度界定研究进展 . 水科学进展, 2012, 23(4): 581-589. doi: CNKI:32.1309.P.20120614.2250.011
    [6] 侯庆志, 陆永军, 王 建, 季荣耀, 王艳红, 陆 彦.  HJ]Key words:climate change, human activities, hydrological influences, driving factors河口与海岸滩涂动力地貌过程研究进展 . 水科学进展, 2012, 23(2): 286-294. doi: CNKI: 32.1309.P.20120224.2005.021
    [7] 张诚, 严登华, 郝彩莲, 秦天玲, 王凌河.  水的生态服务功能研究进展及关键支撑技术 . 水科学进展, 2011, 22(1): 126-134.
    [8] 杨银科, 黄强, 刘禹, 王文科, 王义民.  利用树轮资料重建河流径流量研究进展 . 水科学进展, 2010, 21(3): 430-434.
    [9] 滕彦国, 左锐, 王金生, 林学钰.  区域地下水演化的地球化学研究进展 . 水科学进展, 2010, 21(1): 127-136.
    [10] 铁永波, 李宗亮.  冰川泥石流形成机理研究进展 . 水科学进展, 2010, 21(6): 861-866.
    [11] 王波, 黄薇, 陈进.  累积环境影响研究进展 . 水科学进展, 2009, 20(1): 145-152.
    [12] 范昊明, 周丽丽, 武敏, 刘艳华.  沟灌侵蚀研究进展 . 水科学进展, 2009, 20(2): 298-303.
    [13] 陈生水, 钟启明, 陶建基.  土石坝溃决模拟及水流计算研究进展 . 水科学进展, 2008, 19(6): 903-910.
    [14] 吕菲, 刘建立.  孔隙网络模型在土壤水文学中的应用研究进展 . 水科学进展, 2007, 18(6): 915-922.
    [15] 史宏达, 刘臻.  溃坝水流数值模拟研究进展 . 水科学进展, 2006, 17(1): 129-135.
    [16] 孙昭华, 李义天, 黄颖.  水沙变异条件下的河流系统调整及其研究进展 . 水科学进展, 2006, 17(6): 887-893.
    [17] 赵西宁, 吴普特, 王万忠, 冯浩.  生态环境需水研究进展 . 水科学进展, 2005, 16(4): 617-622.
    [18] 汪家权, 吴劲兵, 李如忠, 钱家忠, 潘天声.  酸雨研究进展与问题探讨 . 水科学进展, 2004, 15(4): 526-530.
    [19] 黄国如, 芮孝芳.  流域降雨径流时间序列的混沌识别及其预测研究进展 . 水科学进展, 2004, 15(2): 255-260.
    [20] 王栋, 许圣斌.  水库群系统防洪联合调度研究进展 . 水科学进展, 2001, 12(1): 118-124.
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-05-24
  • 修回日期:  2002-08-30
  • 刊出日期:  2003-07-25

土壤水力性质确定方法研究进展

    基金项目:  国家自然科学基金资助项目(49971041);中国科学院南京土壤所所长资助基金项目(ISSDF0004);国家重点基础研究发展规划项目(G1999011803)
    作者简介:

    徐绍辉(1963- ),男,山东即墨人,中国科学院南京土壤研究所副研究员,博士,主要从事地下环境中水流和溶质运移的数值模拟研究.

  • 中图分类号: P641.2;G353.11

摘要: 介绍了确定土壤水力性质的各种直接方法(包括实验室方法和田间方法两大类)和间接方法如土壤转换函数方法、分形方法、形态学方法、数值反演方法和经验公式法等的研究进展和现状,指出了它们各自的优点和存在的不足.认为要不断地引入新的实验技术和改进测定设备,并把估计土壤水力性质的各种理论方法及实验信息有机地结合起来进行综合研究,以扩大它们的适用范围和提高预测精度.

English Abstract

徐绍辉, 刘建立. 土壤水力性质确定方法研究进展[J]. 水科学进展, 2003, 14(4): 494-501.
引用本文: 徐绍辉, 刘建立. 土壤水力性质确定方法研究进展[J]. 水科学进展, 2003, 14(4): 494-501.
XU Shao-hui, LIU Jian-li. Advances in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501.
Citation: XU Shao-hui, LIU Jian-li. Advances in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501.
参考文献 (74)

目录

    /

    返回文章
    返回