• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湖泊富营养化模型的研究现状与发展趋势

卢小燕 徐福留 詹巍 赵臻彦 陶澍

卢小燕, 徐福留, 詹巍, 赵臻彦, 陶澍. 湖泊富营养化模型的研究现状与发展趋势[J]. 水科学进展, 2003, 14(6): 792-798.
引用本文: 卢小燕, 徐福留, 詹巍, 赵臻彦, 陶澍. 湖泊富营养化模型的研究现状与发展趋势[J]. 水科学进展, 2003, 14(6): 792-798.
LU Xiao-yan, XU Fu-liu, ZHAN Wei, ZHAO Zhen-yan, TAO Shu. Current situation and development trends in lake eutrophication models[J]. Advances in Water Science, 2003, 14(6): 792-798.
Citation: LU Xiao-yan, XU Fu-liu, ZHAN Wei, ZHAO Zhen-yan, TAO Shu. Current situation and development trends in lake eutrophication models[J]. Advances in Water Science, 2003, 14(6): 792-798.

湖泊富营养化模型的研究现状与发展趋势

基金项目: 国家自然科学基金资助项目(39970121;40271101);国家基金委创新研究群体基金资助项目(40024101)
详细信息
    作者简介:

    卢小燕(1977- ),女,四川德阳人,北京大学环境学院硕士研究生.

  • 中图分类号: P342.3;X524;G353.11

Current situation and development trends in lake eutrophication models

Funds: The project is supported by National Natural Science Foundation of China (No.39970121 and No.40271101)
  • 摘要: 生态模型是湖泊富营养化研究和湖泊生态系统管理的重要手段。20世纪60年代起,湖泊富营养化模型的发展经历了从单层、单室、单成分、零维的简单模型到多层、多室、多成分、三维的复杂模型。根据复杂性特征将湖泊富营养化模型分为:简单的回归模型、简单的营养物平衡模型、复杂的水质、生态、水动力综合模型和生态结构动力学模型,总结了其发展历史和主要特征;在此基础上,讨论了湖泊富营养化模型的存在问题和发展趋势。
  • [1] JΦrgensen S E. State-of-the-art of ecological modelling with emphasis on development of structural dynamic models[J]. Ecological Modelling, 1999, 120: 75-96.
    [2] Rast W, Hdland M. Eutrophication of lakes and reservoirs: a framework for making management decisions[J]. Ambio, 1988, 17(1): 2-12.
    [3] Vollenweider R A. Input-output models with special reference to the phosphorus loading concept in limnology[J]. Schweizerische Zeitschrift fur Hydrologie, 1975, 37: 53-83.
    [4] Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth [J]. Arch Hydrobiol, 1966, 62: 1-28.
    [5] Jones J R, Bachmann R W. Prediction of phosphorus and chlorophyll levels in lakes[J]. J Water Poll Control Fed, 1976, 48(9): 2176-2182.
    [6] Dillon P J, F H Rigler. A test of a simple nutrient budget model predicting phosphorus concentration in lake water[J]. J Fish Res Board Can, 1974, 31: 1771-1778.
    [7] Dillon P J, Rigler F H. A simple method for predicting the capacity of a lake for development based on lake trophic status[J]. J Fish Res Board Ca, 1975, 32(9): 1519-1531.
    [8] 金相灿, 刘鸿亮, 屠清瑛, 等.中国湖泊富营养化[M].北京:中国环境科学出版社, 1990.614.
    [9] 金相灿, 刘树坤, 章宗涉, 等.中国湖泊环境(I)[M].北京:中国海洋出版社,1995.580.
    [10] Chapra S C. Comment on "An empirical method of estimating the retention of phosphorus in lakes" by Kirchner W B and Dillon P J[J]. Water Researches Res, 1977, 2(6): 1033-1034.
    [11] Reckhow K H. Empirical lake models for phosphorus: development, application, limitations and uncertainty[A]. In Scavia D, Robertson, A. (eds.), Perspectives on lake ecosystem modeling[C].Michigan: Ann Arbor Science Publisher, 1979. 193-221.
    [12] Vollenweider R A. The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors[R]. Technical Report DAS:DSI:68.27, OECD, Paris, 1968, 159.
    [13] Kirchner W B, Dillon P J. Comment on "An empirical method of estimating the retention of phosphorus in lakes" by Kirchner W B and Dillon P J [J]. Water Researches Res, 1975, 2(1): 182-183.
    [14] Imboden D M. Phosphorus model of lake eutrophication[J]. Limnology Oceanography, 1974, 19: 297-304.
    [15] O'Melia C R. Phosphorus cycling in lakes[R]. North Carolina Water Resources Research Institute, Raleigh Report 97, 1974.
    [16] Imboden D M, Gachter R. A dynamic lake model for trophic state prediction[J]. Ecological Modeling, 1978, 4: 77-98.
    [17] Larsen D P, Mercier H T, Malveg K Q. Modelling algal growth dynamics in Shagawa Lake, Minnesota[A]. In: Middlebrooke E J, Falkenberg D H, Maloney T E.Modeling Eutrophication Process[C]. Michigan: Ann Arbor Science Publishers, 1974. 15-33.
    [18] Lorenzen M W, Smith O J, Kimmel L V. A long-term phorphorus model for lakes: Application of Lake Washington [A]. Canale R P. Modeling Biochemical Processes in Aquatic Ecosystems[M]. Michigan: Ann Arbor Science, 1976. 75-92.
    [19] JΦrgensen S E. Ecological modeling of lakes[A]. In: Orlob G T. Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs[M]. New York: J Wiley, 1983. 116-149.
    [20] JΦrgensen S E. State-of-the-art management models for lakes and reservoirs[J]. Lakes & Reservoirs: Environment and Management, 1995, 1: 79-87.
    [21] Patten B C, Egloff D A, Richardson T H. Total ecosystem model for a cove in Lake Texoma[A]. System Analysis and Simulation in Ecology[M]. New York: Academic Press, 1975. 457-579.
    [22] Bierman V J. Mathematical model of the selective enhancement of blue-gree algae by nutrient enrichment[A]. Modeling Biochemical Processes in Aquatic Ecosystems P R Canale[C]. Michigan: Ann Arbor Science Publishers, 1976.1-31.
    [23] Canale P R, DePalma I M, Vogel A H. A plankton-based food web model for lake Michigan[A]. Modelling Biochemical Processes in Aquatic Ecosystems[C].Michigan: Ann Arbor Science Publishers, 1976. 33-74.
    [24] JΦrgensen S E. A eutrophication model for a lake [J]. Ecological Modeling, 1976, 2: 147-165.
    [25] Richey J E. An empirical and mathematical approach toward the development of a phosphorus model of Castle Lake[A]. Ecosystem Modeling in Theory and Practice[C]. New York: Wiley & Sonse, 1977. 267-288.
    [26] Scavia D, Park R A. Documentation of selected constructs and parameter values in the aquatic model CLEANER[J]. Ecological Modeling, 1976, 2: 33-58.
    [27] Nyholm N. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes[J]. Ecological Modeling, 1978, 4: 279-310.
    [28] Benndorf J, Recknagel F. Problems of application of the ecological model, SALMO, to lakes and reservoir having various trophic states[J]. Ecological Modeling, 1982, 17: 139-145.
    [29] Thebault J M, Salencon M J. Simulation model of a mesotrophic reservoir: Biological model[J]. Ecological Modeling, 1983, 65: 1-30.
    [30] Sagehashi M, Sakoda A, Motoyuki S. A mathematical model of a shallow and eutrophic lake (the Keszthely basin, lake Balaton) and simulation of restorative manipulations[J]. Water Resources, 2001, 35(7): 1675-1686.
    [31] 屠清英, 顾丁锡, 尹澄清, 等.巢湖富营养化研究[M].合肥:中国科学技术大学出版社, 1990.101-117.
    [32] Xu F-L, Jorgensen S E, Tao S. et al. Modeling the effects of macrophyte restoration on water quality and ecosystem of Lake Chao[J]. Ecol Model, 1999, 117: 239-260.
    [33] 刘玉生, 唐宗武, 韩梅, 等.滇池富营养化生态动力学模型及其应用[J].环境科学研究, 1991, 4(6):1-7.
    [34] 郑丙辉, 张永泽, 梁占彬, 等.滇池生态动力学模型的改进[J].环境科学研究, 1994, 7(4):1-6.
    [35] Karagounis I. Ein physikalisch-biochemisches Seemodell: Anwendung auf das Nordbecken des Luganersees[A]. Communications Nr. 116 of the Laboratory of Hydraulics, Hydrology and Glaciology[C]. Federal Institute of Technology, Zurich, Switzerland, 1992.
    [36] Hu Weiping, Salomonsen JΦrgen, Xu Fu-Liu, et al.A model for the effects of water hyacinths on water quality in an experiment of physico-biological engineering in Lake Taihu, China[J]. Ecological Modelling, 1998, 107(2-3): 171-188.
    [37] Casulli V, Pecenik G. Modello Idrodinamico Tridimendionale dei Lago di Garda[J]. Cimeca, Scienza e Supercalccolo al Cimeca, 1994, 255-258.
    [38] Pang Yong, Pu Peimin. A Three-Dimensional Boundary-Layer Model in the Taihu Lake Area[J]. Sci, Atmos Sin, 1995, 19(21): 243-251.
    [39] 朱永春, 蔡启铭.太湖梅梁湾三维水动力学研究I:模型的建立及结果分析[J].海洋与湖沼,1998,29(1):79-85.
    [40] Ditoro D M, O'Connor D J, Thomann R V, et al. Phytoplankton-zooplankton-nutrient interaction model for western Lake Erie [A]. In: Patten B C. Systems Analysis and Simulation in Ecology[C].New York: Academic Press, 1975. 423-474.
    [41] Halfon E, Lam D C L. The effects of advection-diffusion processes on the eutriphication of large lakes. A hypothetical example: Lake Superior[J]. Ecological Modeling, 1978, 4: 119-132.
    [42] Somlyody L, Koncsos. Influence of sediment resuspension the light conditions and algal growth in Lake Balaton[J]. Ecological Modeling, 1990, 57: 173-192.
    [43] Johnson C A, Ulrich M, Sigg L,et al. A methematical model of the manganese cycle in a seasonally anoxic lake[J]. Limnol Oceanogr, 1991, 36/37: 1425-1426.
    [44] 朱永春, 蔡启铭.太湖梅梁湾三维水动力模型研究II:营养盐随三维湖流的扩散规律[J].海洋与湖沼,1998, 29(2):169-174.
    [45] Chen C W, Orlob G T. Ecologic simulation of aquatic environment[A]. In: Patten B C. Systems Analysis and Simulation in Ecology [C]. New York: Academic Press, 1975.476-588.
    [46] Virtanen M, Koponen J, Dahlbo K, et al. Three-dimensional water quality-transport model compared with field observations[J]. Ecol Model, 1986, 31:185-199.
    [47] Silow E A, Gurman V J, Stom D J, et al. Mathematical models of lake Baikal ecosystem[J]. Ecol Model, 1995, 82(1): 27-39.
    [48] JΦrgensen S E. Structural dynamic model[J]. Ecological Modeling, 1986, 31: 1-9.
    [49] JΦrgensen S E, Mejer H F. A holistic approach to ecological modeling[J]. Ecological Modeling, 1979, 7(1~2): 169-189.
    [50] Straskraba M. Nature control mechanisms in models of aquatic ecosystems[J]. Ecological Modeling, 1979, 6(3): 305-322.
    [51] JΦrgensen S E. Use of models as experimental tool to show that structural changes are accompanied by increased exergy[J]. Ecological Modeling, 1988, 41: 117-126.
    [52] JΦrgensen S E. Development of models able to account for changes in species composition[J]. Ecological Modeling, 1992, 62:195-208.
    [53] JΦrgensen S E. Fundamentals of ecological modeling (second edition)[A]. Amsterdam: Elsevier, 1994, 630.
    [54] JΦrgensen S E, Nielsen S N. Models of the structural dynamics in lakes and reservoirs[J]. Ecolocial Modeling, 1994, 74: 39-46.
    [55] JΦrgensen S E, Nielson S N, Mejer H F. Emergy, Environ, Exergy and Ecological Modelling[J]. Ecological Modeling, 1995, 77: 99-109.
    [56] Nielsen S N. Application of exergy in structural-dynamical modeling[J]. Vert Int Ver Limnol, 1990, 24: 641-645.
    [57] Nielsen S N. Application of maximum exergy in structural dynamical models[A]. Danish National Environmental Research Institute. 1992.
    [58] Nielsen S N. Modelling structural dynamical changes in a Danish shallow lake[J]. Ecological Modeling, 1994, 73: 13-30.
    [59] Nielsen S N. Optimization of exergy in a structural dynamical model[J]. Ecological Modeling, 1995, 77: 111-122.
    [60] JΦrgensen S E. Integration of Ecosystem Theories: A Pattern[A]. Kluwer Dordrecht, 1997, 400.
    [61] Xu F L. Exergy and Structural Exergy as Ecological Indicators for the Development State of the Lake Chao Ecosystem[J]. Ecological Modeling, 1997, 99: 41-49.
    [62] Fontaine T D. A self-designing model for testing hypotheses of ecosystem development[A]. In: Dubois D. Progress in Ecological Engineering and Management by Mathematical Modeling[C]. Proc 2nd Int Conf State-of-the-Art Ecological Modeling, 18-24 April 1980. Liege, Belgium, 1981, 281-291.
    [63] 蔡煜东, 汪列, 姚林声, 等.水质富营养化程度的人工神经网络决策模型[J].中国环境科学, 1995, 15(2):123-127.
    [64] 吴京洪, 杨秀环, 唐宝英, 等. 人工神经网络预报浮游植物生长趋势的研究[J].中山大学学报(自然科学版), 2000, 39(6): 54-58.
    [65] 楼文高.湖库富营养化人工神经网络评价模型[J].水产学报, 2001, 25(5):474-478.
    [66] 邱炳文, 周勇, 李学垣, 等. GIS在土地资源和生态环境研究中的应用、问题与展望[J], 华中农业大学学报, 1998, 18(4): 348-351.
    [67] Xu F L, Tao S, Dawson R W, et al. A GIS-based method of lake eutrophication assessment[J]. Ecol Model, 2001, 144 (2-3): 231-244.
    [68] Janssen M A. An exploratory integrated model to assess management of lake eutrophication[J]. Ecological Modeling, 2001, 140: 111-124.
  • [1] 夏星辉, 吴琼, 牟新利.  全球气候变化对地表水环境质量影响研究进展 . 水科学进展, 2012, 23(1): 124-133. doi: CNKI:32.1309.P.20120104.2014.012
    [2] 王浩, 严登华, 贾仰文, 胡东来, 王凌河.  现代水文水资源学科体系及研究前沿和热点问题 . 水科学进展, 2010, 21(4): 479-489.
    [3] 苏畅, 沈志良, 姚云, 曹海荣.  长江口及其邻近海域富营养化水平评价 . 水科学进展, 2008, 19(1): 99-105.
    [4] 刘浩, 潘伟然.  营养盐负荷对浮游植物水华影响的模型研究 . 水科学进展, 2008, 19(3): 345-351.
    [5] 张博, 张柏, 洪梅, 段洪涛, 宋开山, 王宗明.  湖泊水质遥感研究进展 . 水科学进展, 2007, 18(2): 301-310.
    [6] 马荣华, 唐军武.  湖泊水色遥感参数获取与算法分析 . 水科学进展, 2006, 17(5): 720-726.
    [7] 张洪恩, 施建成, 刘素红.  湖泊亚像元填图算法研究 . 水科学进展, 2006, 17(3): 376-382.
    [8] 李锦秀, 禹雪中, 幸治国.  三峡库区支流富营养化模型开发研究 . 水科学进展, 2005, 16(6): 777-783.
    [9] 吴作平, 杨国录, 甘明辉.  湖泊调蓄作用对河网计算的影响 . 水科学进展, 2004, 15(5): 603-607.
    [10] 薛联青, 吕锡武, 吴磊.  湖水-沉积物界面内源物质交换动态复水模拟研究 . 水科学进展, 2004, 15(2): 189-192.
    [11] 郭纯青.  海南琼北复式含水层系统水循环特征 . 水科学进展, 2003, 14(3): 379-383.
    [12] 朱广伟, 高光, 秦伯强, 张路, 罗潋葱.  浅水湖泊沉积物中磷的地球化学特征 . 水科学进展, 2003, 14(6): 714-719.
    [13] 饶群, 芮孝芳, 徐炎华, 张宇锋, 张雪英.  水体叶绿素二维生态动力学模型研究 . 水科学进展, 2003, 14(6): 710-713.
    [14] 韩菲, 陈永灿, 刘昭伟.  湖泊及水库富营养化模型研究综述 . 水科学进展, 2003, 14(6): 785-791.
    [15] 陈鸣钊, 丁训静, 许京怀.  用生态环境再改变理论研究湖泊富营养化治理方法 . 水科学进展, 2003, 14(3): 323-327.
    [16] 窦明, 谢平, 夏军, 沈晓鲤, 方芳.  汉江水华问题研究 . 水科学进展, 2002, 13(5): 557-561.
    [17] 窦明, 谢平, 夏军, 张万顺, 侯丙亮.  南水北调中线工程对汉江水华影响研究 . 水科学进展, 2002, 13(6): 714-718.
    [18] 涂燕宁, 肖焕雄.  水电工程经济评价的不确定性及其研究现状 . 水科学进展, 2001, 12(1): 125-129.
    [19] 陈锡林.  江苏资源水利的实践及发展趋势 . 水科学进展, 2000, 11(3): 314-320.
    [20] 吴丰昌, 万国江, 蔡玉蓉, 万曦.  控制湖泊水体化学组成的地球化学原理研究 . 水科学进展, 1997, 8(2): 169-175.
  • 加载中
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-10-16
  • 修回日期:  2002-12-25
  • 刊出日期:  2003-11-25

湖泊富营养化模型的研究现状与发展趋势

    基金项目:  国家自然科学基金资助项目(39970121;40271101);国家基金委创新研究群体基金资助项目(40024101)
    作者简介:

    卢小燕(1977- ),女,四川德阳人,北京大学环境学院硕士研究生.

  • 中图分类号: P342.3;X524;G353.11

摘要: 生态模型是湖泊富营养化研究和湖泊生态系统管理的重要手段。20世纪60年代起,湖泊富营养化模型的发展经历了从单层、单室、单成分、零维的简单模型到多层、多室、多成分、三维的复杂模型。根据复杂性特征将湖泊富营养化模型分为:简单的回归模型、简单的营养物平衡模型、复杂的水质、生态、水动力综合模型和生态结构动力学模型,总结了其发展历史和主要特征;在此基础上,讨论了湖泊富营养化模型的存在问题和发展趋势。

English Abstract

卢小燕, 徐福留, 詹巍, 赵臻彦, 陶澍. 湖泊富营养化模型的研究现状与发展趋势[J]. 水科学进展, 2003, 14(6): 792-798.
引用本文: 卢小燕, 徐福留, 詹巍, 赵臻彦, 陶澍. 湖泊富营养化模型的研究现状与发展趋势[J]. 水科学进展, 2003, 14(6): 792-798.
LU Xiao-yan, XU Fu-liu, ZHAN Wei, ZHAO Zhen-yan, TAO Shu. Current situation and development trends in lake eutrophication models[J]. Advances in Water Science, 2003, 14(6): 792-798.
Citation: LU Xiao-yan, XU Fu-liu, ZHAN Wei, ZHAO Zhen-yan, TAO Shu. Current situation and development trends in lake eutrophication models[J]. Advances in Water Science, 2003, 14(6): 792-798.
参考文献 (68)

目录

    /

    返回文章
    返回