• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

多孔介质渗透率的分形描述

刘晓丽, 梁冰, 薛强

刘晓丽, 梁冰, 薛强. 多孔介质渗透率的分形描述[J]. 水科学进展, 2003, 14(6): 769-773.
引用本文: 刘晓丽, 梁冰, 薛强. 多孔介质渗透率的分形描述[J]. 水科学进展, 2003, 14(6): 769-773.
LIU Xiao-li, LIANG Bing, XUE Qiang. Fractal description of porous media permeability[J]. Advances in Water Science, 2003, 14(6): 769-773.
Citation: LIU Xiao-li, LIANG Bing, XUE Qiang. Fractal description of porous media permeability[J]. Advances in Water Science, 2003, 14(6): 769-773.

多孔介质渗透率的分形描述

基金项目: 国家教育部资助项目(2000172);辽宁省自然科学基金资助项目(2001101063)
详细信息
    作者简介:

    刘晓丽(1978- ),男,山东泰安人,硕士研究生,主要从事环境流体力学数值模拟及环境岩土工程方面的研究.E-mail:liuxl78@sina.com

  • 中图分类号: P641.2

Fractal description of porous media permeability

Funds: The project is supported by the Ministry of Education (No.2000172)
  • 摘要: 针对土壤、岩石等多孔介质结构的复杂性,从其结构形成的物理机制和达西定律出发,利用分形几何理论,将土壤等作为在统计意义上具有分形特征的多孔介质来研究其水力参数与结构之间的关系,建立了饱和多孔介质渗透率与其分维数之间的定量化的函数式。试验应用扫描电镜法研究了多孔介质断面微结构并算出分维数。试验结果表明:利用该模型预测的多孔介质渗透率与实测值基本吻合,能够比较精确地预测多孔介质水力参数。
    Abstract: The fractal geometry theories were adopted to study the relations between porous media permeability and its microst ructure from the physical mechanism of its microstructure formation and Darcy's law.Furthermore the function between saturate porous media permeability and the fractal dimension was established with the viewpoint that soil(or rock) is fractal in a statistic sense.The morphological details was studied and the fractal dimensions was gained by the scanning electron microscope, which verified the function.Compared the permeability values predicted by the model with the measured values, a good agreement was obtained.The results demonst rate that the model is precise in predicting the porous media hydraulic parameters.
  • [1] 刘建国, 聂永丰.非饱和土壤水力参数预测的分形模型[J].水科学进展, 2001,12(1):99-105.
    [2] Thompson A H, Katz A J, Krohn C E.The microgeometry and transport properties of sandstones[J].Advances in Physics, 1987, 36(5):625-694.
    [3] Tyler S W, Wheatcraft S W.Fractal process in soil water retention[J]. Water Resour Res, 1990, 26:1047-1054.
    [4] Rieu M, Sposito G. Fractal Fragmentation: soil porosity and soil water properties I. Theory[J].Soil Sci Sco Am J, 1991, 55:1231-1238.
    [5] Perfect E, Mclaughlin N B, Kay B D, et al.An improved fractal equation for the soil water retention curve[J].Water Resour Res,1996, 32(2):281-288.
    [6] Shepard S J.Using a fractal model to compute the hydraulic conductivity function[J]. Soil Sci Sco Am J, 1993, 57:300-306.
    [7] Mandelbrot B B. Fractal Geometry of Nature[M].San Francisco: Freeman, 1982.
    [8] 张国祺, 李后强.分形理论对世界认识的意义[J].大自然探索, 1994, 13(1):11-16.
    [9] 法尔科内 K J.分形几何-数学基础与应用[M].曾文曲, 刘世耀, 戴连贵, 等译.沈阳:东北工学院出版社, 1991.
    [10] 孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社, 1999.
    [11] 施斌, 姜洪涛.粘性土的微观结构分析技术研究[J].岩石力学与工程学报, 2001(6):864-870.
    [12] 谢和平, 薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社, 1998.
    [13] 何琰, 吴念胜.确定孔隙结构分形维数的新方法[J].石油实验地质, 1999(4):372-375.
计量
  • 文章访问数:  101
  • HTML全文浏览量:  43
  • PDF下载量:  850
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-10-09
  • 修回日期:  2002-12-09
  • 刊出日期:  2003-11-24

目录

    /

    返回文章
    返回