[1]
|
Takens F.Detecting strange attractors in turbulence[A].In:D A Rand,L S Yong.Dynamical systems and turbulence[M].Warwick,Lecture Notes in Mathematics,898[C].Berlin:Springer-Verlag,1981.366-381. |
[2]
|
Packard N H,Crutchfield J,Farmer J.Geometry from a time series[J].Physics Review Letters,1980,45(9):712-715. |
[3]
|
Jayawardena A W,Lai F.Analysis and prediction of chaos in rainfall and stream flow time series[J].Journal of Hydrology,1994,153:23-52. |
[4]
|
Frazer A M,Swinney H L.Independent coordinates for strange attractors from mutual information[J].Phys Rev A,1986,33(2):1134-1140. |
[5]
|
Liebert W,Schuster H G.Proper choice of the time delay for the analysis of chaotic time series[J].Phys Lett A,1989,141:386-390. |
[6]
|
Rodriguez-Iturbe I,De P F B,Sharifi M B.Chaos in rainfall[J].Water Resources Research,1989,25(7):1667-1675. |
[7]
|
Sivakumar B,Liong S Y,Liaw C Y.Singapore rainfall behavior:chaotic?[J].Journal of Hydro Eng,ASCE,1999,4(1):38-48. |
[8]
|
Sharifi M B,Georgakakos K P,Rodriguez-Iturbe I.Evidence of deterministic chaos in the pulse of storm rainfall[J].Journal of Atmos Sci,1990,47(7):888-893. |
[9]
|
Sivakumar B,Liong S Y,Liaw C Y.Evidence of chaotic behavior in Singapore rainfall[J].J Am Water Resour Assoc,1998,34(2):301-310. |
[10]
|
丁晶,邓育仁,傅军.洪水相空间预测[J].成都科技大学学报,1995,85:7-11. |
[11]
|
傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230. |
[12]
|
温权,张士军,张周胜.探求径流序列中的混沌特性[J].水电能源科学,1999,17(1):21-23. |
[13]
|
Yingkang Zhou,Zhiyuan Ma,Lachun Wang.Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years[J].Journal of Hydrology,2002,258(1):100-110. |
[14]
|
洪时中.非线性时间序列分析中的最新进展及其在地球科学中的应用前景[J].地球科学进展,1999,14(6):559-564. |
[15]
|
赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186. |
[16]
|
Grassberger P,Prociaccia I.Estimation of the Kolomogorov entropy from a chaotic signal[J].Phys Rev A,1983,28:2591-2593. |
[17]
|
Wolf A,Swift J B,Swinney J B.Determining Lypunov exponents from a time series[J].Physics D,1985,16:282-317. |
[18]
|
Grassberger P,Procaccia I.Measuring the strangeness of strange attractors[J].Physica D,1983,9:189-208. |
[19]
|
Casdagli M.Nonlinear predication of chaotic time series[J].Physica D,1989,35:335-356. |
[20]
|
Sugihara G,May R M.Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[J].Nature,1990,344:734-741. |
[21]
|
Hense A.On the possible existence of a strange attractor for the southern oscillation[J].Beitr Phys Atmos,1987,60(1):34-47. |
[22]
|
Puente C E,Obregon N.A deterministic geometric representation of temporal rainfall:results for a storm in Boston[J].Water Resour Res,1996,32(9):2825-2839. |
[23]
|
Porporato A,Ridolfi L.Nonlinear analysis of river flow time sequences[J].Water Resour Res,1997,33(6):1353-1367. |
[24]
|
温权,张士军,张周胜.基于混沌动力学的日径流时间序列预测[J].华中理工大学学报,1998,26(12):62-64. |
[25]
|
权先璋,蒋传文,张勇传.径流预报的混沌神经网络理论及应用[J].武汉城市建设学院学报,1999,16(3):33-36. |
[26]
|
蒋传文,权先璋,陈实,等.径流序列的混沌神经网络预测方法[J].水电能源科学,1999,17(2):39-41. |
[27]
|
权先璋,温权,张勇传.混沌预测技术在径流预报中的应用[J].华中理工大学学报,1999,27(12):41-43. |
[28]
|
Smith L A.Intrinsic limits on dimension calculations[J].Phys Lett A,1988,133(6):283-288. |
[29]
|
Havstad J W,Ehlers C L.Attractor dimension of nonstationary dynamical systems from small data sets[J].Phys Rev A,1989,39(2):845-853. |
[30]
|
Nerenberg M A H,Essex C.Correlation dimension and systematic geometric effects[J].Phys Rev A,1990,42(12):7065-7074. |
[31]
|
Tsonis A A,Elsner J B,Georgakakos K P.Estimating the dimension of weather and climate attractors:important issues about the procedure and interpretation[J].J Atmos Sci,1993,50:2549-2555. |
[32]
|
Sivakumar B.Chaos theory in hydrology:important issues and interpretations[J].Journal of hydrology,2000,227:1-20. |
[33]
|
Sivakumar B,Phoon K K,Liong S Y.A systematic approach to noise reduction in observed chaotic time series[J].Journal of hydrology,1999,219:103-135. |