Optimal alignment of channel and wanderings mathematician model
-
摘要: 在传统漫游数学家模型的基础上,以线路定性方案、渠段纵坡为决策变量,工程总投资为目标函数,考虑渠段线路状态转移和渠道首末水位约束,提出了阶段函数已知情况下的长距离输水渠道线路优化二维动态规划模型。实例证明该法对长距离输水渠道线路系统的优化比传统线路方法更优越。Abstract: On the basis of a revised model of wanderings mathematician,this paper presents a 2-D dynamic programming model for the optimal alignment of channel with known segment function.The model takes the longitudinal slope of the channel and qualitative alignment scheme of each segment as system variables.The minimum works investment is taken as objective function,and the following factors such as the water levels at the head and end of channel,segment transfer of each alignment are regarded as constrains.There are a better results in the optimal alignment with this method than with the traditional one in the application cases.
-
Keywords:
- channel /
- optimal alignment /
- mathematician model
-
-
[1] 黄伟雄.跨流域调水与华北水资源的合理配置——我国南水北调新路径的探讨[J].资源科学,2002,24(5):8-13. [2] 吴险峰,刘昌明,杨志峰,等.黄河上游南水北调西线工程可调水量及风险分析[J].自然资源学报,2002,17(1):9-15. [3] 卢华友,沈佩君,邵东国,等.跨流域调水工程实时优化调度模型研究[J].武汉水利电力大学学报,1997(5):11-15. [4] 杨胜天,刘昌明,杨志峰,等.南水北调西线调水工程区的自然生态环境评价[J].地理学报,2002,57(1):11-18. [5] 贲克平.国外大规模跨流域调水的经验教训与展望[J].湖南水利水电,2001(6):26-30. [6] 程吉林,等.高维动态规划试验选优方法及其在渠道工程中的应用[J].水利学报,1998(1):39-44. [7] 程吉林,金兆森,孙学华,等.渠道纵横断面优化的动态规划法研究[J].水科学进展,1997,8(1):83-89. [8] Cooper L,Cooper M.Introduction to Dynamic Programming.动态规划导论[M].张有为译.北京:国防工业出版社,1985.172-185.
计量
- 文章访问数: 113
- HTML全文浏览量: 24
- PDF下载量: 460