• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

多孔介质中溶质有效扩散系数预测的分形模型

刘建国, 王洪涛, 聂永丰

刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462.
引用本文: 刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462.
LIU Jian-guo, WANG Hong-tao, NIE Yong-feng. Fractal model for predicting effective diffusion coefficient of solute in porous media[J]. Advances in Water Science, 2004, 15(4): 458-462.
Citation: LIU Jian-guo, WANG Hong-tao, NIE Yong-feng. Fractal model for predicting effective diffusion coefficient of solute in porous media[J]. Advances in Water Science, 2004, 15(4): 458-462.

多孔介质中溶质有效扩散系数预测的分形模型

基金项目: 清华大学"985"资助项目
详细信息
    作者简介:

    刘建国(1972- ),男,甘肃古浪人,清华大学讲师,博士,主要从事固体废物处理处置与资源化、土壤与地下水污染控制等研究.E-mail:jgliu@tsinghua.edu.cn

  • 中图分类号: X705;TU411.4

Fractal model for predicting effective diffusion coefficient of solute in porous media

  • 摘要: 依据分形理论和方法,探索溶质在多孔介质中的有效扩散系数的替代预测方法。在多孔介质溶质扩散的弯曲毛细管束模型的基础上,以分形维数作为介质的基本几何特性参数,建立了多孔介质中溶质扩散的分形毛细管束模型,推导出了溶质有效扩散系数与介质孔隙度之间的幂定律关系式,幂指数是介质孔隙分维和表面分维的函数,反映了介质孔隙体积的层次分布与孔隙通道曲折程度对扩散的影响。对粘性土的分形维数测定数据和有效扩散系数试验测定数据的分析表明,利用该关系式预测多孔介质中溶质的有效扩散系数是较为准确可靠的。
    Abstract: An alternative method is explored to predict effective diffusion coefficient of solute in porous media by using the fractal approach. A fractal capillary tube model is established to be an improvement of the classical sinuous capillary tube model and a power law equation is derived. The power exponent is a function of pore volume fractal dimension and surface fractal dimension,which respectively characterize the hierarchical structure and the tortuosity of pores. Analytical comparison of the reported experimental data of fractal dimension of clayey soils with the corresponding effective diffusion coefficients indicates that the derived power law equation is valid to predict the effective diffusion coefficient of solute in porous media.
  • [1] Gimenez D,Perfect E,Rawls W J,et al.Fractal models for predicting soil hydraulic properties: a review[J].Engineering Geology,1997,48: 161-183.
    [2] Epstein N.On tortuosity and the tortuosity factor in flow and diffusion through porous media[J].Chem Eng Sci,1989,44(3): 777-779.
    [3] Grathwohl P.Diffusion in Natural Porous Media: Contaminant Transport,Sorption/Desorption,and Dissolution Kinetics[M].Boston: Kluwer Academic Publishers,1997.
    [4] Katz A J,Thompson A H.Fractal sandstone pores: implication for conductivity and pore formation[J].Phys Rev Lett,1985,54(12): 1 325-1 328.
    [5] Krohn C E,Thompson A H.Fractal sandstone pores: automated measurements using scaning-electron-microscope images[J].Phys Rev B,1986,33(9): 6 366-6 374.
    [6] Gimenez D,Allmaras R R,Huggins D R,et al.Prediction of the saturated hydraulic conductivity-porosity dependence using fractals[J].Soil Sci Soc Am J,1997b,61: 1 285-1 292.
    [7] Kravchenko A,Zhang R.Estimating the soil water retention from particle-size distribution: a fractal approach[J].Soil Sci,1998,163(3): 171-179.
    [8] Neimark A.A new approach to the determination of the surface fractal dimension of porous solid[J].Physica A,1992,191:258-262.
    [9] Sokolowska Z,Sokolowski S.Influence of humic acid on surface fractal dimension of kaolin: analysis of mercury porosimetry and water vapour adsorption data[J].Geoderma,1999,88: 233-249.
    [10] Anderson A N,McBratney A B,FitzPatrick E A.Soil mass,surface and spectral fractal dimensions estimated from thin section photographs[J].Soil Sci Soc Am J,1996,60: 962-969.
    [11] Bartoli F,Philippy R,Doirisse M,et al.Structure and self-similarity in silty and sandy soils: The fractal approach[J].J Soil Sci,1991,42:167-185.
    [12] Sokolowska Z.On the role of energetic and geometric heterogeneity in sorption of water vapor by soils: application of a fractal approach[J].Geoderma,1989,45: 251-265.
    [13] Borkovec M,Wu Q,Degovics G,et al.Surface area and size distribution of soil particles[J].Colloid Surf A: Physicochem Eng Aspects,1993,73: 65-76.
    [14] Young I M,Crawford J W.The fractal structure of soil aggregates: its measurement and interpretation[J].J Soil Sci,1991,42: 187-192.
    [15] Bartoli F,Philippy R,Burtin G.Influence of organic matter on aggragation in Oxisols rich gibbsite or in geothite.I,Structure: the fractal approach[J].Geoderma,1992,56: 67-85.
    [16] Avnir D,Farin D,Pfeifei P.Molecular fractal surfaces[J].Nature,1984,308: 261-263.
    [17] Johnson R L,Cherry J R,Pankow J F.Diffusive contaminant transport in natural clays: a field example and implications for clay-lined waste disposal sites[J].Environ Sci Tech,1989,23: 340-349.
    [18] 刘建国.多孔介质水分运动与污染物迁移的分形几何研究[D].北京:清华大学,2001.
计量
  • 文章访问数:  229
  • HTML全文浏览量:  89
  • PDF下载量:  917
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-01
  • 修回日期:  2003-07-19
  • 刊出日期:  2004-07-24

目录

    /

    返回文章
    返回