• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形理论在水文水资源中的应用

张少文 王文圣 丁晶 常福宣

张少文, 王文圣, 丁晶, 常福宣. 分形理论在水文水资源中的应用[J]. 水科学进展, 2005, 16(1): 141-146.
引用本文: 张少文, 王文圣, 丁晶, 常福宣. 分形理论在水文水资源中的应用[J]. 水科学进展, 2005, 16(1): 141-146.
ZHANG Shao-wen, WANG Wen-sheng, DING Jing, CHANG Fu-xuan. Application of fractal theory to hydrology and water resources[J]. Advances in Water Science, 2005, 16(1): 141-146.
Citation: ZHANG Shao-wen, WANG Wen-sheng, DING Jing, CHANG Fu-xuan. Application of fractal theory to hydrology and water resources[J]. Advances in Water Science, 2005, 16(1): 141-146.

分形理论在水文水资源中的应用

基金项目: 国家自然科学基金资助项目(40271024;50249024;50239050)
详细信息
    作者简介:

    张少文(1960- ),男,河南郑州人,高级工程师,博士研究生,主要从事水利水电工程的规划与设计工作.E-mail:zsw.scu2002@126.com;zsw.scu2002@163.com

  • 中图分类号: P343;S152.7;TV211

Application of fractal theory to hydrology and water resources

Funds: The project is supported by the National Natural Science Foundation of China(No.40271024,No.50249024 and No.50239050).
  • 摘要: 较系统地论述了分形理论在水文水资源中的应用.主要包括:水系河网结构和流域地形地貌及其演变,河床表面形态,降水时空分布,洪水时空变化,径流过程和土壤水下渗等.概括了当前在应用中的特点:活跃思想和方法创新,同时指出值得注意的问题:在大量资料基础上进行深入分析和充分论证.
  • [1] 李后强,程光钺.分形和分维[M].成都:四川教学出版社,1990.5-8.
    [2] Rodriguez-Iturbe,Rinaldo A.Fractal river basins-Change and self-organization[M].Cambridge:Cambridge University Press,1997.99-190.
    [3] Book review:Scale dependence and scale invariance in hydrology[J].Hydrological Sciences-Journal,2000,45(1):164-165.
    [4] Fietler D,Zhang Y.Fractal aspects of swiss landscape[J].Physica A,1992,191:213-219.
    [5] barbera L,Rosso R.On fractal geometry of river networks[J].Water Resour Res,1989,25(4):735-741.
    [6] Tarboton D G,Bras R L,Rodriguez-Iturbe I.The fractal nature of river networks[J].Water Resour Res,1989,24(8):1 317-1 322.
    [7] Mcherhar A I,Ibbitt R P,Brown S L R,et al.Data for Ashley river to test channel network and river basin heterogeneity concepts[J].Water Resour Res,1998,34(1):139-142.
    [8] Rodriguez-Iturbe M,Marani R,Rigon A Rialdo.Self-organized river basin landscapes:fractal and multifractal characteristics[J].Water Resour Res,1994,30(12):3531-3539.
    [9] 汪富泉.泥沙运动及河床演变的分形特征与自组织规律研究[D].成都:四川大学,1999.9-110.
    [10] Gupta V K.Statistical self-similarity in river networks parameterized by elevation[J].Water Resources Bulletin,1989,25(3):72-75.
    [11] 罗文锋,李后强,丁晶,等.Horton定律及分枝网络结构的分形描述[J].水科学进展,1998,9(2):118-123.
    [12] Robert A,Roy A G.On the fractal interpretation of the main-stream length-drainage area relationship[J].Water Resour Res,1990,26(9):839-842.
    [13] 洪时中,洪时明.地学领域中的分维研究:水系、地震及其他[J].大自然探索,1998,7(2):90-98.
    [14] Rosso R,Bacchi B,Barbera P L.Fractal relation of mainstream length to catchment area in river networks[J].Water Resour Res,1991,27(3):381-387.
    [15] Nikora V.Fractal structures of river plan forms[J].Water Resour Res,1991,27(6):1327-1333.
    [16] 李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1992(7):516-519.
    [17] 冯平,冯炎.河流形态特征的分维计算方法[J].地理学报,1993,52(4):324-330.
    [18] 傅军,丁晶,邓育仁.嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995(1):74-79.
    [19] Marnani A,Rigon R,Rinaldo A.A note on fractal channel networks[J].Water Resour Res,1991,27(12):3041-3049.
    [20] Rigon R,Rinaldo A,Rodriguez-Iturbe T,et al.Optimal channel networks:a fremework for the study of river basin morphology[J].Water Rescur Res,1993,39(6):1635-1 646.
    [21] Howard A D.Theoretical model of optimal drainage networks[J].Water Resour Res,1990,24(9):2107-2117.
    [22] Rigon A,Rinaldo A,Rodriguez-Iturbe I.On landscape self-organization[J].J Geophys Res,1994,99(11):993-998.
    [23] Rinaldo A,Rodriguez-Iturbe I,Rigon R,et al.Self-organized fractal river network[J].Phys Rev Lett,1992,70(1):822-826.
    [24] Sun T,Meaken P,Jossang T.A minimum energy dissipation model for river basin geometry[J].Phys Rev E,1994,49(6):4865-4872.
    [25] Tarboton D G,Bras R L,Rodriguez-Iturbe I.Scaling and elevation in river networks[J].Water Resour Res,1989,25(9):3037-3039.
    [26] de Vries H,Becher T,Echhardt B.Power law distribution of discharge in ideal networks[J].Water Resour Res,1994,30(12):3541-3543.
    [27] Rodriguez-Iturbe I,Ijjasz-Vasquez E,Bras Tarboton D G.Power law distribution of discharge and energy in river basins[J].Water Resour Res,1992,28(4):1089-1 093.
    [28] Wharton G,Tomlinson.Flood discharge estimation from river channel dimensions:results of application in Jave,Burunda,Ghana and Tanzania[J].Hydrological Sciences-Journal,1999,44(1):97-110.
    [29] 金德生,陈浩,郭庆伍.河道纵剖面分形-非线性形态特征[J].地理学报,1993,52(2):154-161.
    [30] 王协康,方铎,姚令侃.非均匀沙床面粗糙度的分形特征[J].水利学报,1999(7):70-74.
    [31] Nikora V I.Fractal structures of river plan forms[J].Water Resour Res,1991,17(6):1 327-1 333.
    [32] Nikora V I,Sapozhnikov V B,Noever D A.Fractal geometry of individual river channels and its computer simulation[J].Water Resour Res,1993,29(10):3561-3568.
    [33] Nikora V I,Sapozhnikov V B.River network fractal geometry and its computer simulation[J].Water Resour Res,1993,29(10):3569-3575.
    [34] Sapozhnikov V B,Foufpula-Georgou E.Self-affinity in braided rivers[J].Water Resour Res,1996,32(5):1429-1439.
    [35] Foufpula-Georgou E,Sapozhnikov V B.Anisotropic scaling in braided rivers:an integrated theoretical framework and results from application to an experimental river[J].Water Resour Res,1998,34(4):863-867.
    [36] Nykane D K,Foufpula-Georgou E,Sapozhnikov V B.Study of spatial scaling in braided river patterns using synthetic aperture radar images[J].Water Resour Res,1998,34(7):1795-1 807.
    [37] Foufpula-Georgou E,Sapozhnikov V B.Do the current landscape elevation models show self-organizaed criticality?[J].Water Resour Res,1996,32(4):1 109-1 112.
    [38] 姚令侃,方铎.非均匀自组织临界性及其应用研究[J].水利学报,1997(3):26-23.
    [39] Lovejoy S,Schertzer D,Tsonis A A.Functional box-counting and multiple elliptical dimensions in rain[J].Science,1987,235:1 036-1038.
    [40] Olsson J,Niemczynowics J,Berndtsson R.Fractal analysis of high-resolution rainfall time serials[J].J Geophys Res,1993,98(12):23 265-23 274.
    [41] Sivakumar B.A preliminary investigation on the scaling behaviour of rainfall observed in two different climates[J].Hydrological Sciences-Journal,2000,45(2):203-219.
    [42] Lin Shu-chen,Liu Chang-ling,Lee Tzong-yeang.Fractal of rainfall:identification of temporal scaling law[J].Fractals,1997,7(2):123-131.
    [43] Svensson C,Olsson J,Berndtsson R.Multifractal properties of daily rainfall in two different climates[J].Water Resour Res,1996,32(8):2463-2472.
    [44] de Lima M I P,grasman J.Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal[J].J Hydrol,1999,217:1-11.
    [45] Waymire E.Scaling limits and self-similarity in precipitation fields[J].Water Resour Res,1985,21(8):1272-1281.
    [46] Foufpula-Georgou E,Gupta V V K,Waymire E.scaling considerations in the modeling of temporal rainfall[J].Water Resour Res,1984,20(11):1611-1619.
    [47] Love joy S,Schertzer D.Generalized scale invariance in the atmosphere and fractal models of rain[J].Water Resour Res,1985,21(8):1233-1256.
    [48] Keden B,Chiu L S.Are rain rate processes self-similar?[J].Water Resour Res,1987,23(10):1 816-1 818.
    [49] Zawadzki I.Fractal structure and exponential decorrelation in rain[J].J Geophys Res,1987,92(8):9586-9590.
    [50] Waymire E,Gupta V,Rodriguez-Iturbe I.A spectral theory of rainfall intensity at the meso-β scale[J].Water Resour Res,1984,20(10):1453-1465.
    [51] Kumar P,Foufpula-Georgou E.A Multicomponent decomposition of spatial rainfall fields 1.Segration of large-and small-scale features using wavelet transorms[J].Water Resour Res,1993,29(8):2515-2532.
    [52] Kumar P,Foufpula-Georgou E.A Multicomponent decomposition of spatial rainfall fields 2.Self-similarity in fluctuations[J].Water Resour Res,1993,29(8):2533-2544.
    [53] Koutsoyiannis D,Foufoula-Georgiou E.A scaling model of a storm hyetograph[J].Water Resour Res,1997,29(7):2345-2361.
    [54] Menabbde M,Seed A,Pegram G.A simple scaling model for extreme rainfall[J].Water Resource Res,1999,35(1):335-339.
    [55] 常福宣,丁晶,姚健.降雨随历时变化标度性质的探讨[J].长江流域资源与环境,2002,11(1):79-83.
    [56] Michele C D,Kottegoda N T,Rosso R,et al.The derivation of areal reduction facton of storm rainfall from its scaling properties[J].Water Resources Rescarch,2001,37(12):3 247-3 252.
    [57] Gupta V K,Waymire E.Multiscaling properties of spatial rainfall and river flow distributions[J].J Geophys Res,1990,95(3):1 999-2009.
    [58] Smith J A.Representation of basin scale in flood peak distributions[J].Water Resour Res,1992,28(1i):2993-2999.
    [59] Gupta V K,Mesa O J,Dawdy D R.Multiscaling theory of flood peaks:Regional quantile analysis[J].Water Resour Res,1994,30(12):3405-3421.
    [60] Dawdy D R,Gupta V K.Multiscaling and skew separation in regional floods[J].Water Resour Res,1995,31(11):2761-2767.
    [61] Ouarada,T B M J,Bobee B,Rasmussen P R,et al.Comment on "Multiscaling and skew separation in regional floods"[J].Water Resour Res,1997,33(1):271-272.
    [62] Bates B C,Rahman A,Mein R G,et al.Climated and physical factors that influence the homogeneity of regional floods in southeastern Australia[J].Water Resour Res,1998,34(12):3 369-3 381.
    [63] Robison J S,Sivapalan M.An investigation into the physical causes of scaling and heterogeneity of regional flood frequency[J].Water Resour Res,1997,33(5):1045-1059.
    [64] 常福宣,丁晶.关于大流域洪量历时关系的探讨[J].水利水电技术,2001,32(6):4-7.
    [65] 侯玉,吴伯贤,邓国权.分形理论用于洪水分期的初步探讨[J].水科学进展,1999,10(2):140-143.
    [66] 丁晶,刘国东.日径流过程分维估计[J].四川水力发电,1999,18(4):74-76.
    [67] 刘德平.分形理论在水文过程形态特征分析中的应用[J].水利学报,1998(2):20-25.
    [68] 傅军,丁晶,邓育仁.嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995(1):74-79.
    [69] 李贤彬.子波分析及其在水文水资源研究中的应用[D].成都:四川大学,1999.9-98.
    [70] Mesa O J,Poveda G.The Hurst effect:the scale of fluctuation approach[J].Water Resour Res,1993,29(12):3 995-4 002.
    [71] Anderson P L,Meerschaert M M.Modeling river flows with heavy tails[J].Water Resour Res,1998,34(9):2271-2280.
    [72] Tokinaga S,Moriyasu H,Miyazaki A,et al.Forecasting of time series with fractal geometry by using scale transformations and parameter estimations obtained by the wavelet transform[J].Electronics and Communications in Japan,Part 3,1997,80(9):2 054-2 062.
    [73] 常福宣.分形理论在水文水资源研究中的应用[D].成都:四川大学,2001.40-45.
    [74] 冯平,王仁超.水文干旱的时间分形特征探讨[J].水利水电技术,1997,28(11):48-51.
    [75] 冯利华,许晓路.金衢盆地旱涝统计特征初步分析[J].水科学进展,1999,10(1):84-88.
    [76] Tchiguirinskaia I,Lu S,Molz F J,et al.Multfractal versus monofrctal analysis of wetland topography[J].Stochastic Environmental Research and Rish Assessment,2000,14(1):8-32.
    [77] Liu H H,Molz F J.Multifractal analyses of hydraulic conductivity distributions[J].Water Resour Res,,1997,33(11):2483-3488.
    [78] Lovejoy S,Schertzer D,Silas P.Diffusion in one-dimensional multifractal porous media[J].Water Resour Res,1998,34(12):3 283-3291.
    [79] 徐永福,田美存.土的分形微结构[J].水利水电科技进展,1996,16(1):25-29.
    [80] 徐永福,孙婉莹,吴正根.我国膨胀土的分形结构的研究[J].河海大学学报,1997,25(1):18-23.
    [81] Loague K,Kyriakidis.Spatial and temporal variability in the R-5 infiltration data set:rainfall-runoff simulations[J].Water Resour Res,1997,33(12):2 883-2895.
    [82] Grayson R B,Western A W,Chiew F H S.Preferred states in spatial soil moisture patterns:local and nonlocal controls[J].Water Resour Res,1997,33(12):2897-2908.
    [83] Merz B,Plate E J.An analysis of the effects of spatial variability of soil moisture on runoff[J].Water Resour Res,1997,33(12):2909-2922.
    [84] Dooge J C I,Bruen M.Scale effects on moisture fluxes at unvegetated land surfaces[J].Water Resour Res,1997,33(12):2923-2927.
  • [1] 钟亮, 许光祥, 曾锋.  沙粒当量粗糙度的分形表达 . 水科学进展, 2013, 24(1): 111-117.
    [2] 沈中原, 李占斌, 李鹏, 鲁克新.  流域地貌形态特征多重分形算法研究 . 水科学进展, 2009, 20(3): 385-391.
    [3] 朱磊, 周清, 王康, 杨金忠.  基于多重分形理论的土壤水非均匀流动分析 . 水科学进展, 2009, 20(3): 392-397.
    [4] 牛志广, 陆仁强, 王晨婉.  天津市近海水质预测方法研究 . 水科学进展, 2009, 20(2): 222-226.
    [5] 谢先红, 崔远来, 蔡学良.  灌区塘堰分布分形描述 . 水科学进展, 2007, 18(6): 858-863.
    [6] 陈华, 郭生练, 熊立华, 徐高洪, 李订芳.  面向对象的GIS水文水资源数据模型设计与实现 . 水科学进展, 2005, 16(4): 556-563.
    [7] 李云开, 杨培岭, 任树梅, 罗远培.  土壤水分与溶质运移机制的分形理论研究进展 . 水科学进展, 2005, 16(6): 892-899.
    [8] 王康, 张仁铎, 王富庆.  基于连续分形理论的土壤非饱和水力传导度的研究 . 水科学进展, 2004, 15(2): 206-210.
    [9] 邓铭江, 郭春红.  干旱区内陆河流域水文与水资源问题 . 水科学进展, 2004, 15(6): 819-823.
    [10] 刘晓丽, 梁冰, 薛强.  多孔介质渗透率的分形描述 . 水科学进展, 2003, 14(6): 769-773.
    [11] 刘建立, 徐绍辉, 刘慧, 郭飞.  确定田间土壤水力传导率的分形方法 . 水科学进展, 2003, 14(4): 464-470.
    [12] 黄冠华, 詹卫华.  土壤水分特性曲线的分形模拟 . 水科学进展, 2002, 13(1): 55-60.
    [13] 王文圣, 丁晶, 向红莲.  小波分析在水文学中的应用研究及展望 . 水科学进展, 2002, 13(4): 515-520.
    [14] 杨建强, 罗先香.  MATLAB软件工具箱简介 . 水科学进展, 2001, 12(2): 237-242.
    [15] 张翔, 丁晶.  神经智能信息处理系统的研究现状及其在水文水资源中的应用展望 . 水科学进展, 2000, 11(1): 105-110.
    [16] 侯玉, 吴伯贤, 郑国权.  分形理论用于洪水分期的初步探讨 . 水科学进展, 1999, 10(2): 140-143.
    [17] 汤一波, 金忠青.  脉动压力的紊流分形特征 . 水科学进展, 1998, 9(4): 361-366.
    [18] 刘春蓁.  气候变化对我国水文水资源的可能影响 . 水科学进展, 1997, 8(3): 220-225.
    [19] 张建云, A. Dowley, M. Bruen.  地理信息系统及其在水文水资源中的应用 . 水科学进展, 1995, 6(4): 290-296.
    [20] 刘国纬.  纪念泥沙专家方宗岱先生 . 水科学进展, 1994, 5(4): 333-334.
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-11-25
  • 修回日期:  2004-03-20
  • 刊出日期:  2005-01-25

分形理论在水文水资源中的应用

    基金项目:  国家自然科学基金资助项目(40271024;50249024;50239050)
    作者简介:

    张少文(1960- ),男,河南郑州人,高级工程师,博士研究生,主要从事水利水电工程的规划与设计工作.E-mail:zsw.scu2002@126.com;zsw.scu2002@163.com

  • 中图分类号: P343;S152.7;TV211

摘要: 较系统地论述了分形理论在水文水资源中的应用.主要包括:水系河网结构和流域地形地貌及其演变,河床表面形态,降水时空分布,洪水时空变化,径流过程和土壤水下渗等.概括了当前在应用中的特点:活跃思想和方法创新,同时指出值得注意的问题:在大量资料基础上进行深入分析和充分论证.

English Abstract

张少文, 王文圣, 丁晶, 常福宣. 分形理论在水文水资源中的应用[J]. 水科学进展, 2005, 16(1): 141-146.
引用本文: 张少文, 王文圣, 丁晶, 常福宣. 分形理论在水文水资源中的应用[J]. 水科学进展, 2005, 16(1): 141-146.
ZHANG Shao-wen, WANG Wen-sheng, DING Jing, CHANG Fu-xuan. Application of fractal theory to hydrology and water resources[J]. Advances in Water Science, 2005, 16(1): 141-146.
Citation: ZHANG Shao-wen, WANG Wen-sheng, DING Jing, CHANG Fu-xuan. Application of fractal theory to hydrology and water resources[J]. Advances in Water Science, 2005, 16(1): 141-146.
参考文献 (84)

目录

    /

    返回文章
    返回