基于可微参数学习的积融雪新安江模型

Incorporating snow accumulation and melting into the Xin'anjiang model using differentiable parameter learning

  • 摘要: 新安江模型是最为重要的水文模型之一。通过添加CemaNeige模块,本文构建基于可微参数学习的积融雪新安江模型。应用长短时记忆神经网络通过前向传播挖掘流域属性和气象数据与模型参数之间的关系,将参数传递给积融雪新安江模型,进而通过后向传播计算误差优化网络参数,面向Catchment Attributes and Meteorology for Large-sample Studies(CAMELS)数据集的531个流域,构建4组模型形成对比试验。研究结果表明:CemaNeige模块提升了新安江模型径流模拟性能,Kling-Gupta efficiency(EKG)中位数从0.58提升至0.68;对于单一流域模拟,可微参数学习使得EKG中位数提升至0.70;对于多流域整体模拟,可微参数学习进一步使得EKG中位数提升至0.72。上述改进既源于考虑积融雪过程,又源于可微参数学习的有效性,还源于流域之间的协同效应。整体上,可微参数学习能够有效地促进积融雪新安江模型的构建和应用。

     

    Abstract: The Xin'anjiang model stands as one of the most important hydrological models. This paper develops a differentiable Xin'anjiang model coupled with the CemaNeige module(dMXAJ)under the framework of differentiable parameter learning. Specifically, the long short-term memory(LSTM)network is employed to generate parameters for the dMXAJ through forward propagation, using catchment attributes and meteorological data as inputs. These parameters are then fed into the dMXAJ and optimized via backpropagation. Four models are used to investigate the effectiveness of dMXAJ across 531 catchments from the Catchment Attributes and Meteorology for Large-sample Studies. The results show that the CemaNeige module effectively improves the performance of the Xin'anjiang model, increasing the median Kling-Gupta efficiency(EKG)from 0.58 to 0.68. For the local dMXAJ, the median EKG is improved to 0.70; for the regional dMXAJ, the median EKG is improved to 0.72. These improvements can be attributed to the consideration of snow accumulation and melting, the effectiveness of the differentiable parameter learning and synergistic effects. Overall, the differentiable parameter learning effectively facilitates the development and application of the Xin'anjiang model coupled with the CemaNeige module.

     

/

返回文章
返回