Abstract:
A rock landslide in channel reservoirs typically undergoes a disintegration process during the rundown on an inclined plane, that is, disintegrating into numerous blocks of different shapes and sizes. In previous studies on landslide-generated waves, landslides were mainly represented by a rigid body or a granular cluster of uniform granulates. However, the effect of landslide disintegration on landslide generated waves has not yet received significant attention. In this study, the effect of the disintegration process of a landslide during rundown on free-surface characteristics of landslide generated waves in a wave basin was preliminarily investigated. The results showed that the maximum wave amplitude and maximum wave height decreased with increasing disintegration index parameter. The leading wave amplitude and wave height attenuation in the landslide axis during wave propagation could be satisfactorily described based on the solitary wave theory. Moreover, the leading wave amplitude and wave height decay behaviours were mainly dependent on the maximum wave amplitude and the maximum wave height, respectively. It was also found that the wave attenuation was higher in a wave basin than in a wave channel.