Abstract:
Climate change potentially increases the severity, frequency, and duration of cyanobacterial blooms in freshwater lakes, thereby threatening the ecosystem service functions of these lakes and negatively impacting human health. This paper provides a comprehensive review of the external environmental factors and internal eco-physiological characteristics that may trigger these blooms. In particular, detailed discussions are provided to explain the processes leading to cyanobacterial blooms caused due to rising temperature, CO
2 concentration, and extreme climate change. A preliminary research framework to determine the impact of climate change on the blooms, namely, the "mechanism analysis — model construction — simulated prediction — risk assessment" research framework, is established. Strategies for the control and prevention of bacterial blooms are developed. Several key future research themes, including the construction of big data monitoring platforms, mechanism models for development and risk prediction, and formulations of nutrient control standards and prevention policies, are proposed to tackle the current problem. This review provides scientific evidence for the prevention and control of cyanobacterial blooms in lakes.