一种流动性滑坡涌浪动力学模型

Establishment of dynamic model of a flow-like landslide-induced surge

  • 摘要: 滑坡涌浪是入水滑坡引起的一种次生灾害,其致灾范围远大于滑坡的运动区域,准确预测其演化过程是防治这类灾害的关键。现有预测模型多将滑体简化为刚体,而实际滑坡多表现出流态运动的特征。为更合理地描述滑体和涌浪的耦合运动,将滑体视为流态物质,在此基础上推导了滑坡与水体耦合运动的控制方程,利用有限差分法对控制方程求解,建立了一种可模拟流动性滑坡涌浪演化过程的动力学模型。使用该模型对三峡库区的龚家方滑坡涌浪的演化过程进行模拟,将模拟所得河道纵截面处的最大浪高值与实测值进行对比,结果表明最大浪高值出现在滑坡的主滑动方向,且最大浪高沿纵截面两侧快速衰减,模拟结果与实测吻合。

     

    Abstract: Landslide-induced surge is a kind of secondary disasters triggered by waterside landslides. Generally,the endangering range in a landslide-induced surge far exceeds the motion area of the landslide,and accurately predicting spatial evolution of landslide-induced surge is of significant importance for disaster prevention. However,the existing models usually simplify landslides as rigid bodies,which is obviously against the fact that many landslides propagate in a flow-like way. Therefore,a numerical model was put forward in this paper to provide more reliable prediction results for landslide-induced surges. By treating slip masses as flow-like materials,the governing equations of landslide-water coupling motion were derived. Next,the governing equations were solved by the finite difference method,and the dynamic model that can simulate the evolutionary process of flow-like landslide-induced surge was established. Finally,the evolutionary process of Gongjiafang landslide located at the Three Gorges of the Yangtze River was simulated by the model and the simulated maximum wave heights in the longitudinal section (i.e.,the flow direction) of the river were compared with the measured data. Results show that the maximum wave height in this section appears in the main sliding direction of the landslide,and the maximum wave heights on both two sides decrease quickly. The simulated results agree well with the measured values. The established model can provide more adequate prediction of the influence range of landslide-induced surge.

     

/

返回文章
返回