Abstract:
Wind waves are a ubiquitous characteristic of aquatic environments and also an intrinsic feature of planktonic habitats. In lakes, especially in large and shallow lakes, wind waves greatly influence the physico-chemical properties of the water column, and directly or indirectly play a crucial role in plankton ecology. This paper reviewed studies of the effects of wind waves on the zooplankton, phytoplankton, and bacterioplankton in lakes. Accumulating studies showed that wind waves affect the spatial-temporal distribution of plankton and play a crucial role in shaping the structure and function of planktonic systems. In particular, it strongly affects the behaviour, nutrient uptake rate and flux, predation, growth, competition and succession of planktonic organisms, which in turn significantly influence the structure of aquatic food webs, potentially affecting the overall structure and function of lake ecosystems. This paper highlights the major future research directions to further reveal the ecological effects of hydrodynamics in lakes under global climate change scneario, which could provide new insights and support for decision making in terms of management and control of eutrophic lakes.