[1] HARMAN C, STEWARDSON M. Optimizing dam release rules to meet environmental flow targets[J]. River Research and Applications, 2005, 21:113-129. doi:  10.1002/rra.836
[2] CHEN W, OLDEN J D. Designing flows to resolve human and environmental water needs in a dam-regulated river[J]. Nature Communications, 2017, 8:2158. doi:  10.1038/s41467-017-02226-4
[3] SCHMITT R J P, BIZZI S, CASTELLETTI A, et al. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong[J]. Nature Sustainability, 2018(1):96-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d5b67a2afec059dd7cb3f3688c5df26
[4] MAAVARA T, PARSONS C T, RIDENOUR C, et al. Global phosphorus retention by river damming[J]. PNAS, 2015, 112:15603-15608. doi:  10.1073/pnas.1511797112
[5] MAAVARA T, LAUERWALD R, REGNIER P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8:15347. doi:  10.1038/ncomms15347
[6] CHEN Q, SHI W, HUISMAN J, et al. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream[J]. National Science Review, 2020.[doi: 10.1093/nsr/nwaa026]
[7] MAAVARA T, CHEN Q, van METER K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth and Environment, 2020, 1(2):103-116. doi:  10.1038/s43017-019-0019-0
[8] SHI W Q, CHEN Q W, ZHANG J Y, et al. Nitrous oxide emissions from cascade hydropower reservoirs in the Upper Mekong River[J]. Water Research, 2020.[doi: 10.1016/j.watres.2020.115582]
[9] ORR S, PITTOCK J, CHAPAGAIN A, et al. Dams on the Mekong River:lost fish protein and the implications for land and water resources[J]. Global Environment Change, 2012, 22:925-932. doi:  10.1016/j.gloenvcha.2012.06.002
[10] MORAN E F, LOPEZ M C, MOORE N, et al. Sustainable hydropower in the 21st century[J]. PNAS, 2018, 115:11891-11898. doi:  10.1073/pnas.1809426115
[11] PAN B Z, YIN X A, WANG H Z, et al. An exploratory analysis of ecological water requirements of macroinvertebrates in the Wuhan branch of the Yangtze River[J]. Quaternary International, 2015, 380:256-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb359e93e4ab221ec5a274237e0f9709
[12] STONE R. Dam-building threatens Mekong fisheries[J]. Science, 2016, 354:1084-1085. doi:  10.1126/science.354.6316.1084
[13] WINEMILLER K O, MCINTYRE P B, CASTELLO L, et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong[J]. Science, 2016, 351:128-129. doi:  10.1126/science.aac7082
[14] MCINTYRE P B, LIERMANN C A R, REVENGA C. Linking freshwater fishery management to global food security and biodiversity conservation[J]. PNAS, 2016, 113:12880-12885. doi:  10.1073/pnas.1521540113
[15] BROWNELL R L, REEVES R R, THOMAS P O, et al. Dams threaten rare Mekong dolphins[J]. Science, 2017, 355:805-806. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=979e988a433791a50563fbbcb54fe45a
[16] GRUMBINE R E, XU J. Mekong hydropower development[J]. Science, 2011, 332:178-179. doi:  10.1126/science.1200990
[17] NGOR P B. Mekong's dams damn fisheries[J]. Nature, 2018, 563:184.
[18] MURCHIE K J, HAIR K P E, PULLEN C E. Fish response to modified flow regimes in regulated rivers:research methods, effects and opportunities[J]. River Research and Applications, 2008, 24(2):197-217. doi:  10.1002/rra.1058
[19] POFF N L, SCHMIDT J C. How dams can go with the flow[J]. Science, 2016, 353:1099-1100. doi:  10.1126/science.aah4926
[20] SYMPHORIAN G R, MADAMOMBE E, van der ZAAGP. Dam operation for environmental water releases:the case of Osborne Dam, save catchment, Zimbabwe[J]. Physics and Chemistry of the Earth, 2003, 28:985-993. doi:  10.1016/j.pce.2003.08.012
[21] LI R, CHEN Q, HAN R, et al. Determination of daily eco-hydrography by the fish spawning habitat suitability model and application to reservoir eco-operation[J]. Ecohydrology, 2016, 9(6):973-981. doi:  10.1002/eco.1695
[22] HUANG Z, WANG L, Yangtze dams increasingly threaten the survival of the Chinese sturgeon[J]. Current Biology, 2018, 28:1-8. doi:  10.1016/j.cub.2017.11.007
[23] CHEN Q, CHEN D, LI R, et al. Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations[J]. Ecological Modelling, 2013, 252:266-272. doi:  10.1016/j.ecolmodel.2012.03.008
[24] WANG L, MO K, CHEN Q, et al. Estimating ecological flows for fish overwintering in plain rivers using a method based on water temperature and critical water depth[J]. Ecohydrology, 2019, 12:e2098. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/eco.2098
[25] WANG Y, RHOADS B, WANG D. Assessment of the flow regime alterations in the middle reach of the Yangtze River associated with dam construction:potential ecological implications[J]. Hydrological Processes, 2016, 30(21):3949-3966. doi:  10.1002/hyp.10921
[26] PARK Y S, CHANG J B, LEK S, et al. Conservation strategies for endemic fish species threatened by the three Gorges Dam[J]. Conservation Biology, 2003, 17(6):1748-1758. doi:  10.1111/j.1523-1739.2003.00430.x
[27] YI Y, SUN J, ZHANG S. A habitat suitability model for Chinese sturgeon determined using the generalized additive method[J]. Journal of Hydrology, 2016, 534:11-18. doi:  10.1016/j.jhydrol.2015.12.055
[28] YU J, ZHANG J, CHEN Q, et al. Dramatic source-sink transition of N2O in the water level fluctuation zone of the Three Gorges Reservoir during flooding-drying processes[J]. Environmental Science and Pollution Research, 2018, 25(20):20023-20031. doi:  10.1007/s11356-018-2190-0
[29] LIU L, LIU D, JOHNSON D M, et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir:implications for management[J]. Water Research, 2012, 317A(5):294-302. https://www.sciencedirect.com/science/article/abs/pii/S0043135412000498
[30] 董哲仁.生态水工学探索[M].中国水利水电出版社, 2007.

DONG Z R. Exploration of eco-hydraulic engineering[M]. China Water & Power Press, 2007. (in Chinese)
[31] 陈求稳.生态水力学及其在水利工程生态环境效应模拟调控中的应用[J].水利学报, 2016, 47(3):413-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201603016

CHEN Q W. Discipline of ecohydraulics and the application to modeling and mitigating eco-environmental effects of hydraulic works[J]. Journal of Hydraulic Engineering, 2016, 47(3):413-423. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201603016
[32] YI Y, CHEN X, YANG Z, et al. Evaluating the ecological influence of hydraulic projects:a review of aquatic habitat suitability models[J]. Renewable and Sustainable Energy Reviews, 2017, 68:748-762. doi:  10.1016/j.rser.2016.09.138
[33] HU Y, CHENG H. The urgency of assessing the greenhouse gas budgets of hydroelectric reservoirs in China[J]. Nature Climate Change, 2013, 3:708-712. doi:  10.1038/nclimate1831
[34] 赵炎, 曾源, 吴炳方, 等.水库水气界面温室气体通量监测方法综述[J].水科学进展, 2011, 22(1):135-146 http://skxjz.nhri.cn/article/id/1791

ZHAO Y, ZENG Y, WU B F, et al. Review of methods for measuring green houses flux from the air water interface of reservoirs[J]. Advances in Water Science, 2011, 22(1):135-146. (in Chinese) http://skxjz.nhri.cn/article/id/1791
[35] SHI W, CHEN Q, YI Q, et al. Carbon emission from cascade reservoirs:spatial heterogeneity and mechanisms[J]. Environmental Science & Technology, 2017, 51(21):12175-12181.
[36] 姬雨雨, 陈求稳, 施文卿, 等.水库运行对漫湾库区洲滩水热交换影响[J].水科学进展, 2018, 29(1):73-79. doi:  10.14042/j.cnki.32.1309.2018.01.009

JI Y Y, CHEN Q W, SHI W Q, et al. Influence of reservoir operation on water and heat exchange in the Manwan's island[J]. Advances in Water Science, 2018, 29(1):73-79. (in Chinese) doi:  10.14042/j.cnki.32.1309.2018.01.009
[37] MAO G, WANG S, TENG Q, et al. The sustainable future of hydropower:a critical analysis of cooling units via the theory of inventive problem solving and life cycle assessment methods[J]. Journal of Cleaner Production, 2017, 142(4):2446-2453. https://www.sciencedirect.com/science/article/pii/S0959652616318704
[38] 崔彦萍, 王保栋, 陈求稳, 等.三峡水库三期蓄水前后长江口硅酸盐分布及其比值变化[J].环境科学学报, 2013, 33(7):1974-1979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201307023

CUI Y P, WANG B D, CHEN Q W, et al. Distribution of dissolved silicate and changes of Si-N and Si-P ration in Yangtze River estuary after impoundment of Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae, 2013, 33(7):1974-1979. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201307023
[39] WANG L, CHEN Q, HAN R, et al. Responses of phytoplankton community in Yangtze River estuary and adjacent sea areas to the impoundment of the Three Gorges Reservoir[J]. International Journal of Limnology, 2017, 53:1-10. doi:  10.1051/limn/2016027
[40] STONE R. Mayhem on the Mekong[J]. Science, 2011, 333:814-818. doi:  10.1126/science.333.6044.814
[41] HEGGENES J, ALFREDSEN K, BUSTOS A A, et al. Be cool:a review of hydro-physical changes and fish responses in winter in hydropower-regulated northern streams[J]. Environmental Biology of Fishes, 2018, 101(1):1-21. doi:  10.1007%2Fs10641-017-0677-z
[42] TAO Y, WANG Y, RHOADS B, et al. Quantifying the impacts of the Three Gorges Reservoir on water temperature in the middle reach of the Yangtze River[J]. Journal of Hydrology, 2020, 582:124476. doi:  10.1016/j.jhydrol.2019.124476
[43] YIGZAW W, LI H, FANG X, et al. A multilayer reservoir thermal stratification module for earth system models[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(10):3265-3283. doi:  10.1029/2019MS001632
[44] LIU M, ZHANG Y, SHI K, et al. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data[J]. Science of the Total Environment, 2019, 651:614-624. doi:  10.1016/j.scitotenv.2018.09.215
[45] KEDRA M, WIEJACZKA L. Climatic and dam-induced impacts on river water temperature:assessment and management implications[J]. Science of the Total Environment, 2018, 626:1474-1483. doi:  10.1016/j.scitotenv.2017.10.044
[46] DANIELS M E, DANNER E M. The drivers of river temperatures below a large dam[J]. Water Resources Research, 2020, 56(5):e2019WR026751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/001088048502600113
[47] FARMER T M, MARSCHALL E A, DABROWSKI K, et al. Short winters threaten temperate fish populations[J]. Nature Communications, 2015, 6:7724. doi:  10.1038/ncomms8724
[48] MCBRIDE R S, SOMARAKIS S, FITZHUGH G R, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies[J]. Fish and Fisheries, 2015, 16:23-57. doi:  10.1111/faf.12043
[49] LUGG A, COPELAND C. Review of cold water pollution in the murray-darling basin and the impacts on fish communities[J]. Ecological Management and Restoration, 2014, 15(1):71-79. doi:  10.1111/emr.12074
[50] DADRAS H, DZYUBA B, COSSON J, et al. Effect of water temperature on the physiology of fish spermatozoon function:a brief review[J]. Aquaculture Research, 2017, 48(3):729-740. doi:  10.1111/are.13049
[51] KING H R, PANKHURST N W, WATTS M, et al. Effect of elevated summer temperatures on gonadal steroid production, vitellogenesis and egg quality in female Atlantic salmon[J]. Journal of Fish Biology, 2003, 63(1):153-167. doi:  10.1046/j.1095-8649.2003.00137.x
[52] HONSEY A E, VENTURELLI P.A, LESTER N P. Bioenergetic and limnological foundations for using degree-days derived from air temperatures to describe fish growth[J]. Canadian Journal of Fisheries and Aquatic Science, 2019, 76(4):657-669. doi:  10.1139/cjfas-2018-0051
[53] BELDADE R, BLANDIN A, O'DONNELL R, et al. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction[J]. Nature Communications, 2017, 8:716-725. doi:  10.1038/s41467-017-00565-w
[54] GILLOOLY J F, CHARNOV E L, WEST G B, et al. Effects of size and temperature on developmental time[J]. Nature, 2002, 417(6884):70-73. doi:  10.1038/417070a
[55] KOCOVSKY P M, CHAPMAN D C, MCKENNA J E. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps[J]. Journal of Great Lakes Research, 2012, 38:159-166. doi:  10.1016/j.jglr.2011.11.015
[56] DURANT J M, HJERMANN D, OTTERSEN G, et al. Climate and the match or mismatch between predator requirements and resource availability[J]. Climate Research, 2002, 33(3):271-283. https://www.duo.uio.no/bitstream/handle/10852/37396/clim-res-2007.pdf?sequence=2
[57] KING J, CAMBRAY J A, DEAN I N. Linked effects of dam-released floods and water temperature on spawning[J]. Hydrobiologia, 1998, 384(1):245-265.
[58] MARTIN H, PAUL B, MATHIEU D, et al. Survey timing vs. ecosystem scheduling:degree-days to underpin observed interannual variability in marine ecosystems[J]. Progress in Oceanography, 2018, 166:30-40. doi:  10.1016/j.pocean.2017.07.007
[59] MOTOS L, URIARTE A, VALENCIA V. The spawning environment of the bay of Biscay anchovy (Engraulis encrasicolus L.)[J]. Scientia Marina, 1996, 60:117-140. https://dialnet.unirioja.es/servlet/articulo?codigo=2191636
[60] PAWIROREDJO P, LAMOUREUX J, HALL S G, et al. Degree-days as a tool to determine the heating requirement for channel catfish spawning in earthen ponds[J]. North American Journal of Aquaculture, 2008, 70:328-337. doi:  10.1577/A07-003.1
[61] MAZZEO I, PEÑARANDA D S, GALLEGO V, et al. Temperature modulates the progression of vitellogenesis in the European eel[J]. Aquaculture, 2014, 434:38-47. doi:  10.1016/j.aquaculture.2014.07.020
[62] REGNIER T, GIBB F M, WRIGHT P J. Understanding temperature effects on recruitment in the context of trophic mismatch[J]. Scientific Reports, 2019, 9:15179. doi:  10.1038/s41598-019-51296-5
[63] ROGERS L A, DOUGHERTY A B. Effects of climate and demography on reproductive phenology of a harvested marine fish population[J]. Global Change Biology, 2019, 25:708-720. doi:  10.1111/gcb.14483
[64] KING A J, GWINN D C, TONKIN Z, et al. Using abiotic drivers of fish spawning to inform environmental flow management[J]. Journal of Applied Ecology, 2016, 53:34-43. doi:  10.1111/1365-2664.12542
[65] 梁瑞峰, 邓云, 脱友才, 等.流域水电梯级开发水温累积影响特征分析[J].四川大学学报(工程科学版), 2012(增刊2), 221-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8617820

LIANG R F, DENG Y, TUO Y C, et al. Analysis on characteristics of water temperature's cumulative effects of river cascade hydropower stations[J]. Journal of Sichuan University (Engineering Science Edition), 2012(Suppl2):221-227. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8617820
[66] 纪道斌, 龙良红, 徐慧, 等.梯级水库建设对水环境的累积影响研究进展[J].水利水电科技进展, 2017, 37(3):7-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201703002

JI D B, LONG L H, XU H, et al. Advances in study on cumulative effects of construction of cascaded reservoirs on water environment[J]. Advances in Science and Technology of Water Resources, 2017, 37(3):7-14. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201703002
[67] LU J, LI R, MA Q, et al. Model for total dissolved gas supersaturation from plunging jets in high dams[J]. Journal of Hydraulic Engineering, 2019, 145(1):04018082. doi:  10.1061/%28ASCE%29HY.1943-7900.0001550
[68] 曲璐.高坝工程总溶解气体过饱和与水体含沙量关系[J].水科学进展, 2011, 22(6):839-843. http://skxjz.nhri.cn/article/id/1685

QU L. Relation of total dissolved gas supersaturation and suspended sediment concentration of high-dams[J]. Advances in Water Science, 2011, 22(6):839-843. (in Chinese) http://skxjz.nhri.cn/article/id/1685
[69] HEDDAM S. Generalized regression neural network based approach as a new tool for predicting total dissolved gas (TDG) downstream of spillways of dams:a case study of Columbia River basin dams, USA[J]. Environmental Processes, 2017, 4(1):235-253.
[70] LI R, LI J, LI K, et al. Prediction for supersaturated total dissolved gas in high-dam hydropower projects[J]. Science China Technological Sciences, 2009, 52(12):3661-3667. doi:  10.1007/s11431-009-0337-4
[71] DEMOYER C, SCHIERHOLZ E, GULLIVER J, et al. Impact of bubble and free surface oxygen transfer on diffused aeration systems[J]. Water Research, 2003, 37(8):1890-1904. doi:  10.1016/S0043-1354(02)00566-3
[72] BAGATUR T, ONEN F. Prediction of flow and oxygen transfer by a plunging water jets with genetic expression programming (GEP) models[J]. Arabian Journal for Science and Engineering, 2014, 39(6):4421-4432. doi:  10.1007/s13369-014-1092-9
[73] CHANSON H, AOKI S, HOQUE A. Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets[J]. Chemical Engineering Science, 2004, 59(4):747-758. doi:  10.1016/j.ces.2003.11.016
[74] WANG Y, POLITANO M, WEBER L. Spillway jet regime and total dissolved gas prediction with a multiphase flow model[J]. Journal of Hydraulic Research, 2019, 57(1):26-38. doi:  10.1080/00221686.2018.1428231
[75] KAMAL R, ZHU D, ASCE M, et al. Dissipation of supersaturated total dissolved gases in the intermediate mixing zone of a regulated river[J]. Journal of Environmental Engineering, 2018, 145(2):04018135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4bca2a8cc225646227c681a1fd6091b
[76] OU Y, LI R, HODGES B, et al. Impact of temperature on the dissipation process of supersaturated total dissolved gas in flowing water[J]. Fresenius Environmental Bulletin, 2016, 25(6):1927-1934.
[77] HUANG J, LI R, FENG J, et al. Relationship investigation between the dissipation process of supersaturated total dissolved gas and wind effect[J]. Ecological Engineering, 2016, 95:430-437. doi:  10.1016/j.ecoleng.2016.06.042
[78] 冯镜洁, 李然, 李克锋, 等.高坝下游过饱和TDG释放过程研究[J].水力发电学报, 2010, 29(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb201001002

FENG J J, LI R, LI K F, et al. Study on release process of supersaturated total dissolved gas downstream of high dam[J]. Journal of Hydroelectric engineering, 2010, 29(1):7-12. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb201001002
[79] 冯镜洁, 李然, 唐春燕, 等.含沙量对过饱和总溶解气体释放过程影响分析[J].水科学进展, 2012, 23(5):702-708. http://skxjz.nhri.cn/cn/article/doi/CNKI:%2032.1309.P.20120824.1606.012

FENG J J, LI R, TANG C Y, et al. Experimental study on the sediment effect on releasing process of supersaturated total dissolved gas[J]. Advances in Water Science, 2012, 23(5):702-708. (in Chinese) http://skxjz.nhri.cn/cn/article/doi/CNKI:%2032.1309.P.20120824.1606.012
[80] 王琳, 冯镜洁, 李然.鱼道内过饱和总溶解气体释放规律的试验研究[J].工程科学与技术, 2017, 49(6):30-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201706004

WANG L, FENG J J, LI R. Experimental study on dissipation of supersaturated total dissolved gas in a fishway[J]. Advanced Engineering Sciences, 2017, 49(6):30-37. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201706004
[81] FENG J, LI R, MA Q, et al. Experimental and field study on dissipation coefficient of supersaturated total dissolved gas[J]. Journal of Central South University, 2014, 21(5):1995-2003. doi:  10.1007/s11771-014-2148-4
[82] JOHNSON E, CLABOUGH T, PEERY C, et al. Estimating adult chinook salmon exposure to dissolved gas supersaturation downstream of hydroelectric dams using telemetry and hydrodynamic models[J]. River Research and Applications, 2007, 23(9):963-978. doi:  10.1002/rra.1019
[83] O'CONNOR D. Wind effects on gas-liquid transfer coefficients[J]. Journal of Environmental Engineering, 1983, 109(3):731-752. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=19d44baa30d0e610915af2b2624f03eb
[84] SHEN X, LI R, HODGES B, et al. Experiment and simulation of supersaturated total dissolved gas dissipation:focus on the effect of confluence types[J]. Water Research, 2019, 155:320-332. doi:  10.1016/j.watres.2019.02.056
[85] FU X, LI D, ZHANG X. Simulations of the three-dimensional total dissolved gas saturation downstream of spillways under unsteady conditions[J]. Journal of Hydrodynamics, 2010, 22(4):598-604. doi:  10.1016/S1001-6058(09)60093-7
[86] POLITANO M, AMADO A, BICKFORD S, et al. Investigation into the total dissolved gas dynamics of wells dam using a two-phase flow model[J]. Journal of Hydraulic Engineering, 2011, 137(10):1257-1268. doi:  10.1061/(ASCE)HY.1943-7900.0000383
[87] SMILEY J, OKIHIRO M, DRAWBRIDGE M, et al. Pathology of ocular lesions associated with gas supersaturation in white seabass[J]. Journal of Aquatic Animal Health, 2012, 24(1):1-10. doi:  10.1080/08997659.2012.668507
[88] DENG Y, CAO C, LIU X, et al. Effect of total dissolved gas supersaturation on the survival of bighead carp (Hypophthalmichthys Nobilis)[J]. Animals, 2020, 10(1):166. doi:  10.3390/ani10010166
[89] SMILEY J, DRAWBRIDGE M, OKIHIRO M, et al. Acute effects of gas supersaturation on juvenile cultured white seabass[J]. Transactions of the American Fisheries Society, 2011, 140:1269-1276. doi:  10.1080/00028487.2011.618359
[90] 彭天辉, 潘连德, 唐绍林.大口黑鲈慢性气泡病的组织病理观察以及水体分层对发病的影响[J].大连海洋大学学报, 2013, 28(6):578-584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlscxyxb201306012

PENG T H, PAN L D, TANG S L. Pathological observation of chronic gas bubble disease and influence of water stratification on the incidence in largemouth bass Micropterus salmoides[J]. Journal of Dalian Ocean University, 2013, 28(6):578-584. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlscxyxb201306012
[91] WANG Y, LI Y, AN R, et al. Effects of total dissolved gas supersaturation on the swimming performance of two endemic fish species in the Upper Yangtze River[J]. Scientific Reports, 2018, 8(1):10063-10071. doi:  10.1038/s41598-018-28360-7
[92] MA Q, LI R, FENG J, et al. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation[J]. Environmental Science and Pollution Research, 2018, 25(14):13536-13547. doi:  10.1007/s11356-018-1496-2
[93] SÁ-OLIVEIRA J C, HAWES J E, ISAAC-NAHUM V J, et al. Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam[J]. Freshwater Biology, 2015, 60(10):2037-2050. doi:  10.1111/fwb.12628
[94] AGOSTINHO A A, GOMES L C, SANTOS N C L, et al. Fish assemblages in neotropical reservoirs:colonization patterns, impacts and management[J]. Fisheries Research, 2016, 173:26-36. doi:  10.1016/j.fishres.2015.04.006
[95] MARDEN S L, WALDECY A, RICARDO R, et al. Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river[J]. River Research and Applications, 2019, 35(6), 725-735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/rra.3442
[96] DOS SANTOS N C L, de SANTANA H S, DIAS R M, et al. Distribution of benthic macroinvertebrates in a tropical reservoir cascade[J]. Hydrobiologia, 2016, 765:265-275. doi:  10.1007/s10750-015-2419-6
[97] MBAKA J G, MWANIKI M W. A global review of the downstream effects of small impoundments on stream habitat conditions and macroinvertebrates[J]. Environmental Reviews, 2015, 23(3), 257-262. doi:  10.1139/er-2014-0080
[98] BEISEL J N, USSEGLIO-POLATERA P, THOMAS S, et al. Stream community structure in relation to spatial variation:the influence of mesohabitat characteristics[J]. Hydrobiologia, 1998, 389(1/2/3):73-88. doi:  10.1023%2FA%3A1003519429979
[99] 马徐发, 熊邦喜, 王明学, 等.湖北道观河水库大型底栖动物的群落结构及物种多样性[J].湖泊科学, 2004, 16(1):49-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx200401007

MA X F, XIONG B X, WANG M X, et al. The community structure and biodiversity of macrozoobenthos in Daoguanhe Reservoir, Hubei Province[J]. Journal of Lake Sciences, 2004, 16(1):49-55. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx200401007
[100] NELSON S M, LIEBERMAN D M. The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, USA[J] Hydrobiologia, 2002, 489(1):117-129. https://www.researchgate.net/publication/251119344_The_influence_of_flow_and_other_environmental_factors_on_benthic_invertebrates_in_the_Sacramento_River_USA
[101] BEAUGER A, LAIR N, REYES-MARCHANT P, et al. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics[J]. Hydrobiologia, 2006, 571(1):63-76. doi:  10.1007/s10750-006-0217-x
[102] 任海庆, 袁兴中, 刘红, 等.环境因子对河流底栖无脊椎动物群落结构的影响[J].生态学报, 2015, 35(10):3148-3156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201510002

REN H Q, YUAN X Z, LIU H, et al. The effects of environment factors on community structure of benthic invertebrate in rivers[J]. Acta Ecologica Sinica, 2015, 35(10):3148-3156. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201510002
[103] 李仁熙.水温对正颤蚓繁殖的影响[J].水生生物学报, 2003, 27(4):443-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ssswxb200304024

LI R X. Effects of water temperature on reproduction of tubifex muller[J]. Acta Hydrobiologica Sinica, 2003, 27(4):443-444. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ssswxb200304024
[104] 段学花, 王兆印, 徐梦珍.底栖动物与河流生态评价[M].北京:清华大学出版社, 2010.

DUAN X H, WANG Z Y, XU M Z. Benthic macroinvertebrate and application in the assessment of stream ecology[M]. Beijing:Tsinghua University Press, 2010. (in Chinese)
[105] MANDAVILLE S M. Benthic macroinvertebrates in freshwaters:taxa tolerance values, metrics, and protocols[M]. Nova Scotia:Soil & Water Conservation Society of Metro Halifax, 2002
[106] 任淑智.京津及邻近地区底栖动物群落特征与水质等级[J].生态学报, 1991, 11(3):262-268. http://www.cqvip.com/qk/90772X/199103/594746.html

REN S Z. The characteristics of benthic macroinvertebrate community and water quality in Beijing-Tianjin area[J]. Acta Ecologica Sinica, 1991, 11(3):262-268. (in Chinese) http://www.cqvip.com/qk/90772X/199103/594746.html
[107] FROUIN P. Effects of anthropogenic disturbances of tropical soft-bottom benthic communities[J]. Marine Ecology Progress Series, 2000, 194:39-53. doi:  10.3354/meps194039
[108] 龚志军, 谢平, 唐汇涓, 等.水体富营养化对大型底栖动物群落结构及多样性的影响[J].水生生物学报, 2001, 25(3):210-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ssswxb200103002

GONG Z J, XIE P, TANG H J, et al. The Influence of eutrophycation upon community structure and biodiversity of macrozoobenthos[J]. Acta Hydrobiologica Sinica, 2001, 25(3):210-216. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ssswxb200103002
[109] 吴东浩, 于海燕, 吴海燕, 等.基于大型底栖无脊椎动物确定河流营养盐浓度阈值:以西苕溪上游流域为例[J].应用生态学报, 2010, 21(2):483-488. http://www.cnki.com.cn/Article/CJFDTotal-YYSB201002035.htm

WU D H, YU H Y, WU H Y, et al. Estimation of river nutrients thresholds based on benthic macro invertebrate assemblages:a case study in the upper reaches of Xitiao stream in Zhejiang China[J]. Chinese Journal of applied Ecology, 2010, 21(2):483-488. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-YYSB201002035.htm
[110] SLOANE I W, NORRIS R H. Relationship of AUSRIVAS-based macroinvertebrate predictive model outputs to a metal pollution gradient[J]. Journal of the North American Benthological Society, 2003, 22(3):457-471. doi:  10.2307/1468274
[111] 徐霖林, 马长安, 田伟, 等.淀山湖沉积物重金属分布特征及其与底栖动物的关系[J].环境科学学报, 2011, 31(10):2223-2232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201110022

XU L L, MA C A, TIAN W, et al. The distribution of heavy metals in surface sediment of Lake Dianshan and its correlations with macrozoobenthos[J]. Acta Scientiae Circumstantiae, 2011, 31(10):2223-2232. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201110022
[112] GRAÇA M A S, PINTO P, CORTES R, et al. Factors affecting macroinvertebrate richness and diversity in portuguese streams:a two-scale analysis[J]. International Review of Hydrobiology, 2004, 89(2):151-164. doi:  10.1002/iroh.200310705
[113] BUSS D F, DARCÍLIO F B, NESSIMIAN J L, et al. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams[J]. Hydrobiologia, 2004, 518(1/2/3):179-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=725888c79240d498c43c92d60b508a9d
[114] TEWS J, BROSE U, GRIMM V, et al. Animal species diversity driven by habitat heterogeneity/diversity:the importance of keystone structures[J]. Journal of Biogeography, 2004, 31(1):79-92. doi:  10.1046/j.0305-0270.2003.00994.x
[115] WANG J, SOININEN J, ZHANG Y, et al. Contrasting patterns in elevational diversity between microorganisms and macroorganisms[J]. Journal of Biogeography, 2011, 38(3):595-603. doi:  10.1111/j.1365-2699.2010.02423.x
[116] 许亚红, 郑子叶, 王建柱, 等.高岚河大型底栖动物时空分布及影响因子研究[J].生物资源, 2019, 41(5):426-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ajshswzy201905007

XU Y H, ZHENG Z Y, WANG J Z, et al. Temporal and spatial distribution and impact factors of macrobenthos in Gaolan River[J]. Biotic Resources, 2019, 41(5):426-433.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ajshswzy201905007
[117] 陈丽, 王东波, 君珊.拉萨河流域大型底栖动物群落结构及其与环境因子的关系[J].生态学报, 2019, 39(3):757-769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201903001

CHEN L, WANG D B, JUN S. Macroinvertebrate community structure and relationships with environmental factors in the Lhasa River basin[J]. Acta Ecologica Sinica, 2019, 39(3):757-769. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201903001
[118] 朱玲玲, 董先勇, 陈泽方.金沙江下游梯级水库淤积及其对三峡水库影响研究[J].长江科学院院报, 2017, 34(3):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201703001

ZHU L L, DONG X Y, CHEN Z F. Sediment deposition of cascade reservoirs in the Lower Jinsha River and its impact on Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3):1-7. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201703001
[119] 陈浒, 李厚琼, 吴迪, 等.乌江梯级电站开发对大型底栖无脊椎动物群落结构和多样性的影响[J].长江流域资源与环境, 2010, 19(12):1462-1470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CASS_36201719

CHEN H, LI H Q, WU D, et al. Effects of step hydroelectric exploits on community structure and biodiversity of macroinvertebrates in Wujiang River[J]. Resources and Environment in the Yangtze Basin, 2010, 19(12):1462-1470. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CASS_36201719
[120] 张敏, 蔡庆华, 渠晓东, 等.三峡成库后香溪河库湾底栖动物群落演变及库湾纵向分区格局动态[J].生态学报, 2017, 37(13):4483-4494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201713020

ZHANG M, CAI Q H, QU X D, et al. Macroinvertebrate succession and longitudinal zonation dynamics in Xiangxi Bay, after impoundment of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2017, 37(13):4483-4494. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201713020
[121] BAXTER R M. Environmental effects of dams and impoundments[J]. Annual Review of Ecology and Systematics, 1977, 8(1):255-283. doi:  10.1146/annurev.es.08.110177.001351
[122] SHI X, KYNARD B, LIU D, et al. Development of fish passage in China[J]. Fisheries, 2015, 40(4):161-169. doi:  10.1080/03632415.2015.1017634
[123] 李婷, 唐磊, 王丽, 等.水电开发对鱼类种群分布及生态类型变化的影响:以溪洛渡至向家坝河段为例[J].生态学报, 2020, 40(4):1473-1485. http://www.cnki.com.cn/Article/CJFDTotal-STXB202004033.htm

LI T, TANG L, WANG L, et al. Distribution characteristics and ecological types changes in fish communities under hydropower development from Xiluodu to Xiangjiaba reach[J]. Acta Ecologica Sinica, 2020, 40(4):1473-1485. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-STXB202004033.htm
[124] 王沛芳, 王超, 候俊, 等.梯级水电开发中生态保护分析与生态水头理念及确定原则[J].水利水电科技进展, 2016, 36(5):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201605003

WANG P F, WANG C, HOU J, et al. Ecological protection analysis of cascade hydropower development and concept and principle for definition of ecological water head[J]. Advances in Science and Technology of Water Resources, 2016, 36(5):1-7. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201605003
[125] HAN R, CHEN Q, LI R, et al. Investigation on Spinibarbus hollandi behaviors to flow conditions by laboratory physical model and numerical simulations[J]. Ecohydrology, 2013, 6(4):586-597. doi:  10.1002/eco.1388
[126] LI W, CHEN Q, CAI D, et al. Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index[J]. Ecological Modelling, 2015, 311:31-38. doi:  10.1016/j.ecolmodel.2015.05.009
[127] LI M, DUAN Z, GAO X, et al. Impact of the Three Gorges Dam on reproduction of four major Chinese carps species in the middle reaches of the Changjiang River[J]. Chinese Journal of Oceanology and Limnology, 2016, 34:885-893. doi:  10.1007/s00343-016-4303-2
[128] WANG L, CHEN Q, ZHANG J, et al. Incorporating fish habitat requirements of the complete life cycle into ecological flow regime estimation of rivers[J]. Ecohydrology, 2020.[doi: 10.1002/eco2204]
[129] CHEN Q, CHEN D, LI R, et al. Optimizing the operation of the Qingshitan Reservoir in the Lijiang River for multiple human interests and quasi-natural flow maintenance[J]. Journal of Environmental Sciences, 2012, 24(11):1923-1928. doi:  10.1016/S1001-0742(11)61029-2
[130] CHEN D, LI R, CHEN Q, et al. Deriving optimal daily reservoir operation scheme with consideration of downstream ecological hydrograph through a time-nested approach[J]. Water Resources Management, 2015, 29:3371-3386. doi:  10.1007/s11269-015-1005-z
[131] CHEN D, LEON A S, GIBSON N L, et al. Dimension reduction of decision variables for multi-reservoir operation:a spectral optimization model[J]. Water Resources Research, 2016.[doi: 10.1002/2015WR017756]
[132] DENG Y, TUO Y, LI J, et al. Spatial-temporal effects of temperature control device of stoplog intake for Jinping I hydropower station[J]. Science China Technological Sciences, 2011, 54:83-88. doi:  10.1007/s11431-011-4602-y
[133] HE W, LIAN J, YAO Y, et al. Modeling the effect of temperature-control curtain on the thermal structure in a deep stratified reservoir J]. Journal of Environmental Management, 2017, 202:106-116. https://www.sciencedirect.com/science/article/pii/S0301479717306722
[134] CHEN Q, ZHANG J, CHEN Y, et al. Manipulating flow velocity to manage fish reproduction in dammed Rivers[J]. Engineering, 2020.[doi: 10.1016/j.eng.2020.06.013]
[135] LOVETT RA. Rivers on the run[J]. Nature, 2014, 511:521-523. doi:  10.1038/511521a
[136] KIM S N, TODA Y, TSUJIMOTO T. Effects of a low-head dam removal on river morphology and riparian vegetation:a case study of Gongreung River[J]. Journal of Water Resource and Protection, 2014, 6(18):1682-1690. doi:  10.4236/jwarp.2014.618151
[137] MAGILLIGAN F J, NISLOW K H, KYNARD B E, et al. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment[J]. Geomorphology, 2016, 252:158-170. doi:  10.1016/j.geomorph.2015.07.027
[138] 高婷, 李翀, 廖文根.实施支流生境替代保护的基本原则[J].中国水利水电科学研究院学报, 2012, 10(4):267-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgslsdkxyjyxb201204006

GAO T, LI C, LIAO W G. The basic principles in applying tributary habitat alternative protection[J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(4):267-272. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgslsdkxyjyxb201204006
[139] 杨青瑞, 陈声威, 何建宽, 等.支流生境替代保护效果评价指标体系与评价方法研究[J].中国水利水电科学研究院学报, 2015, 13(6):408-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgslsdkxyjyxb201506002

YANG Q R, CHEN S W, HE J K, et al. A study on organoleptic chromaticity-based quantitative assessment method for landscape quality of sandy water[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(6):408-420. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgslsdkxyjyxb201506002
[140] 唐磊, 何术锋, 莫康乐, 等.小型水坝拆除后河貌演变模拟分析:以西河水坝为例[J].水科学进展, 2019, 30(5):699-708. doi:  10.14042/j.cnki.32.1309.2019.05.010

TANG L, HE S F, MO K L, et al. Simulation analysis of river channel evolution after small dam removal:a case study of Xihe dam[J]. Advances in Water Science, 2019, 30(5):699-708. (in Chinese) doi:  10.14042/j.cnki.32.1309.2019.05.010
[141] 林育青, 马君秀, 陈求稳.拆坝对河流生态系统的影响及评估方法综述[J].水利水电科技进展, 2017, 37(5):9-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201705002

LIN Y Q, MA J X, CHEN Q W. Research on effects of dam removal on river ecosystem and review of its assessment methods[J]. Advances in Science and Technology of Water Resources, 2017, 37(5):9-21. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdkjjz201705002