[1] ALCRUDO F,NAVARRO P G.A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations[J].Int J Numer Methods Fluids,1993,16:489-505.
[2] ZHAO D H,SHEN H W,TABIOS G Q.A finite volume two-dimensional unsteady flow model for river basins[J].J Hydraul Eng,ASCE,1994,120:863-883.
[3] WANG J W,LIU R X.The composite finite volume method on unstructured triangular meshes for 2D shallow water equations[J].Int J Numer Methods Fluids,2001,37:933-949.
[4] 胡四一,谭维炎.无结构网格上二维浅水流动的数值模拟[J].水科学进展,1995,6(1):1-9.(HU Si-yi,TAN Wei-yan.Numerical modelling of two-dimensional shallow water flows on unstructured grids[J].Advances in Water Sciences,1995,6(1):1-9.(in Chinese))
[5] NAMIN M,LIN B,FALCONER R A.Estuarine and coastal flows modeling using an algorithm of unstructured triangular finite volume[J].Advances in Water Resources,2004,27:1 179-1 197.
[6] 陈祖华,王光谦,王志石.澳门周围水域潮汐流动的数值模拟[J].应用基础与工程科学学报,2001,9:251-258.(CHEN Zu-hua,WANG Guang-qian,WANG Zhi-shi.Numerical simulation of tidal flow in the surrounding waters of macau[J].Journal of Basic Science and Engineering,2001,9:251-258.(in Chinese))
[7] 邱兆山.有限体积法及其在近岸潮流计算中的应用研究[D].2003.(QIU Zhao-Shan.Finite volume method and its application of tidal flow simulation[D].2003.(in Chinese))
[8] 潘存鸿,徐昆.三角形网格下求解二维浅水方程的和谐Godunov格式[J].水科学进展,2007,18(2):204-209.(PAN Cun-hong,XU Kun.Well-balanced Godunov-type scheme for 2D shallow water flow with triangle mesh[J].Advances in Water Sciences,2007,18(2):204-209.(in Chinese))
[9] HUBBARD M E,GARCIA-NAVANO P.Flux difference splittingand the balancing of source terms and flux gradients[J].J Comput Phys,2000,165:89-125.
[10] GARCIA-NAVANO P,VAZQUEZ-CENDON M E.On numerical treatment of the source terms in the shallow water equations[J].Comput Fluids,2000,29:951-979.
[11] LEVEQUE R J.Balancing source terms and flux gradients in high-resolution Godunov methods:the quasisteady wave-propagation algorithm[J].J Comput Phys,1998,146:346-365.
[12] GASCON L,COBERAN J M.Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws[J].J Comput Phys,2001,172:261-297.
[13] MONTHE L A,BENKHALDOUN F.Positivity preserving finite volume Roe schemes for transport diffusion equations[J].Comput Methods Appl Mech Engrg,1999,178:215-232.
[14] ROGERS B D,BORTHWICK G L,TAYLOR P H.Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver[J].J Comput Phys,2003,192:422-451.
[15] 谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998:136-141.(TAN Wei-yan.Calculation of shallow-water dynamics[M].Beijing:Tsinghua University Press,1998:136-141.(in Chinese))
[16] 李未.Roe-Upwind有限体积模型及对涌潮形成动力机制的数值研究[D].南京:河海大学,2006:33-36.(LI Wei.Roe-upwind finite volume model and numerical simulation of hydrodynamic mechanism of tidal bore[D].Nanjing:Hohai University,2006:33-36.(in Chinese))
[17] PAN D,CHENG J C.A second-order upwind finite-volume method for the Euler solution on unstructured triangular meshes[J].Int j numer methods fluids,1993,16:1079-1098.
[18] SWEBY P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Numer Anal,1984,21:995-1011.
[19] KANSTASIOU C T.Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes[J].Int j numer methods fluids,1997,24:1225-1245.