[1] 陈予恕.非线性动力学中现代分析方法[M].北京:科学出版社,1992.24-26.
[2] 刘式达,刘式适.非线性动力学和复杂现象[M].北京:气象出版社,1989.45-46.
[3] 宋学锋.混沌经济学理论及其应用研究[M].徐州:中国矿业大学出版社,1996.15-21.
[4] 王树禾.微分方程模型与混沌[M].合肥:中国科学技术大学出版社,1999.441-442.
[5] Grassberger P,Pocaccia I.Measuring the strangeness of strange attractors[J].Physica,1983,D9:189-208.
[6] Grassberger P,Procaccia I.Estimation of the Kolmogorov etropy from a chaotic signal[J].Phys Rev,1983,A 28:2 591-2 593.
[7] Wolf A,Swifi J B,Swinney H L,et al.Determining Lyapunov exponents from a time series[J].Physica D,1985,16:285-317.
[8] Hense A.On the possible existence of a strange attractor for the southern oscillation[J].Beitr Phys Atmos,1987,60 (I):34-47.
[9] Rodriguez-Iturbe I,De Power F B,Shari8 M B,et al.Chaos in rainfall[J].Water Resour Res,1989,25 (7):1 667-1 675.
[10] Sharifi M B,Georgakakos K P,Rodriguez-Iturbe I.Evidence of deterministic chaos in the pulse of storm rainfall[J].J Atmos Sci,1990,47:888-S93.
[11] Tsonis A A,Elsner J B,Georgakakos K P.Estimating the dimension of weather and climate attractors:important issues about the procedure and interpretation[J].J Atmos Sci,1993,50:2 549-2 555.
[12] Islam S,Bras R L,Rodriguez-Iturbe I.A possible explanation for low correlation dimension estimates for the atmosphere[J].J Appl Meteor,1993,32:203-208.
[13] 丁晶.洪水混沌分析[J].水资源研究,1992,13(3):14-18.
[14] 王文圣,袁鹏,丁晶,等.门限自回归模型及其在水文随机模拟中的应用[J].四川水力水电,2001,20(增刊):47-50.
[15] 蒋传文,侯志俭,李涛,等.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1 053-1 056.
[16] 王军,石炎福,余华瑞.相空间重构中最优滞时的确定[J].四川大学学报,2001,33(2):47-51.
[17] 丁晶,邓育仁,付军.探索水文现象变化的新途径——混沌分析[J].水利学报,1997(增刊):242-246.
[18] 王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94.
[19] Georgakakos K P,Sharifi M B,Sturdevant P L.Analysis of high-resolution rainfall data[A].In:Kundzewicz Z W.New Uncertainty Concepts in Hydrology and Water Resources[C].New York:Cambridge University Press,1995.114-120.
[20] Sogoyomi T B,Lall U,Abarbanel H D I.Nonlinear dynamics of the Great Salt Lake:dimension estimation[J].Water Resour Res,1996,32(l):149-159.
[21] 傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3 ):226-230.
[22] Porato A,Ridofi L.Nonlinear analysis of river time sequences[J].Water Resour Res,1997,33 (6):1 353-1 367.
[23] Liu Q,Islam S,Rodriguez-Iturbe I,et al.Phase-spaceanalysis of daily streamflow:characterization and prediction[J].Water Resour,1998,21:463-475.
[24] Wang Q,Gan T Y.Biases of comelation dimension estimates of steamflow data in the Canadian prairies[J].Water Resour Res,1998,34 (9):2 329-2 339.
[25] 魏一鸣,孙国栋,胡平昭,等.九江年降水时间序列的混沌特性[J].江西科学,1999,16(3):141-145.
[26] Sivakumar B.Chaos theory in hydrology:important issues and interpretations[J].J Hydrol,2000,227:1-20.
[27] Sivakumar B,Liong S-Y,Liaw C-Y,et al.Singapore rainfall behavior:chaotic[J].Hydrol.Engng,ASCE,1999,4(1) :38-48.
[28] Sivakumar B,Phoon K-K,Liong S-Y,et al.A systematic approach to noise reduction in observed chaotic time series[J].J Hydrol,1999,219 (3~4):103-135.
[29] 陈亚宁,杨思全.高山区突发洪水混沌机制研究[J].自然灾害学报,1999,6(1):48~52.
[30] 周尹康,王腊春,张捷.淮河流域洪涝变化混沌特征[J].自然灾害学报,1999,8(1):42-74.
[31] 李强,徐桂明,黄耘.地下水位的混沌和多重分形特征演化及其中短期预报意义[J].地震,1999,19(3):274-280.
[32] Gupta RK,Rudra RP,Dickinson WT,et al.Stochastic analysis of groundwater levels in a temperate climate[J].Water Res,1992,36(1):51-55.
[33] 袁鹏,李谓新,王文圣,等.月降雨量时间序列中的混沌现象[J].四川大学学报,2002,34(1):16-19.
[34] Jawardena A W,Lai F.Analysis and prediction of chaos in rainfall and stream fiow time series[J].J Hydrol,1994,153:23-52.
[35] Waelbroeck H,Lopez-Pena R,Morales T,et al.Prediction of tropical rainfall by local phase space reconstruction[J].J Atmos Sci,1994,51(22):3 360-3 364.
[36] Puente C E,Obregon N.A deterministic geometric representation of temporal rainfall:results for a storm in Boston[J].Water Resour Res,1996,32(9):2 825-2 839.
[37] Koutsoyiannis D,Pachakis D.Deterministic chaos versus stochasticity in analysis and modeling ofpoint rainfall series[J].J Geophys-Res,1996,101(D21)26:441-451.
[38] 赵永龙,丁晶,邓育仁.相空间小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252-257.
[39] 金菊良,丁晶,魏一鸣.基于遗传算法的门限自回归模型在浅层地下水位预测中的应用[J].水利学报,1999(7):230-234.
[40] 权先璋,蒋传文,张勇传.径流预报的混沌神经网络理论及应用[J].武汉城市建设学院学报,1999,16(3):33-37.
[41] 尤卫红,杞明辉,段旭.小波变换在短期气候预测模型[J].高原气象,1999,18(1):39-46.
[42] Holzfuss J,Mayer-Kres G.An approach to error-estimation in the application of dimension algorithms[A].In:Mayer-I Cress,G.(Ed.).Dimensions and Entropies in Chaotic Systems,Springer[C].New York,1986,114-122.
[43] Frazer A M,Swinney H L.Independent coordinates for strange attractors from mutual information[J].Phys Rev,1986,A 33 (2):1 134-1 140.
[44] Liebert W,Schuster H G.Proper choice of the time delay for the analysis of chaotic time series[J].Phys Lett,1989,A 141:386-390.
[45] Tsonis A A,Elsner J B.The weather attractor over very short timescales[J].Nature,1988,333:545-547.
[46] 赵永龙,丁晶.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186.
[47] Smith L A.Intrinsic limits on dimension calculations[J].Phys Lett,1988,A 133 (6):283-288.
[48] Nerenberg M A H,Essex C.Correlation dimension and systematic geometric effects[J].Phys Rev,1990,A 42 (12):7 065-7 074.
[49] Havstad J W,Ehlers C L.Attractor dimension of nonstationary dynamical systems from small data sets[J].Phys Rev,1989,A 39 (2):845-853.
[50] Schreiber T.Extremely simple nonlinear noise reduction method[J].Phys rev E,1993,47(4):2 401-2 404.
[51] Schreiber T,Grassberger P.A simple noise reduction method for real data[J].Phys Lett,1991,A 160:411-418.