师鹏飞, 赵酉键, 徐辉荣, 李振亚, 杨涛, 冯仲恺. 融合相空间重构和深度学习的径流模拟预测[J]. 水科学进展, 2023, 34(3): 388-397. DOI: 10.14042/j.cnki.32.1309.2023.03.006
引用本文: 师鹏飞, 赵酉键, 徐辉荣, 李振亚, 杨涛, 冯仲恺. 融合相空间重构和深度学习的径流模拟预测[J]. 水科学进展, 2023, 34(3): 388-397. DOI: 10.14042/j.cnki.32.1309.2023.03.006
SHI Pengfei, ZHAO Youjian, XU Huirong, LI Zhenya, YANG Tao, FENG Zhongkai. Simulation and prediction of streamflow based on phase space reconstruction and deep learning algorithm[J]. Advances in Water Science, 2023, 34(3): 388-397. DOI: 10.14042/j.cnki.32.1309.2023.03.006
Citation: SHI Pengfei, ZHAO Youjian, XU Huirong, LI Zhenya, YANG Tao, FENG Zhongkai. Simulation and prediction of streamflow based on phase space reconstruction and deep learning algorithm[J]. Advances in Water Science, 2023, 34(3): 388-397. DOI: 10.14042/j.cnki.32.1309.2023.03.006

融合相空间重构和深度学习的径流模拟预测

Simulation and prediction of streamflow based on phase space reconstruction and deep learning algorithm

  • 摘要: 发展对数据依赖程度低、快捷实用和精准的模拟预报技术, 可为资料缺乏地区径流模拟预测提供有效的解决办法。从数据驱动的角度, 提出一种融合相空间重构(PSR)和长短期记忆神经网络(LSTM)的径流预测复合模型PSR-LSTM, 在国内外不同气候分区的10个流域(站点)进行验证。结果表明: PSR-LSTM能够提取水文变量的多维子空间特征, 并较好预测不同时间尺度的径流变化过程; 相较于LSTM, PSR-LSTM预测未来1、3、5、7、9时间步长的纳什效率系数在10个流域平均提高1.49%~9.77%, 均方根误差平均降低17.01%~19.72%, 对训练数据量的依赖程度相比LSTM降低25%~33%。研究成果可为广大资料短缺流域水文过程模拟和预测提供参考。

     

    Abstract: Developing low data-dependent, efficient, practical and accurate modeling techniques can provide effective solutions for hydrological simulation and prediction in areas with limited data availability.From a data-driven perspective, a composite streamflow prediction model, PSR-LSTM, which integrates Phase Space Reconstruction (PSR) and Long Short-Term Memory (LSTM) networks, was proposed in this study and validated globally over ten river basins (stations) in different climate zones.The results indicate that the PSR-LSTM can effectively extract multi-dimensional sub-space hydrological features and accurately predict streamflow changes at different time scales.Compared to LSTM, the Nash efficiency coefficient of PSR-LSTM in predictions of future 1 to 9 timesteps is increased by an average of 1.49% to 9.77% over the ten river basins; the root mean square error is reduced by an average of 17.01% to 19.72%.The dependency on the amount of training data is reduced by 25% to 33% for PSR-LSTM compared to LSTM.The research findings obtained in this study provide insights into hydrological simulation and prediction in data-scarce river basins.

     

/

返回文章
返回