丁法龙, 茅泽育. 圆形断面管道非满流水动力特性[J]. 水科学进展, 2020, 31(4): 547-555. DOI: 10.14042/j.cnki.32.1309.2020.04.008
引用本文: 丁法龙, 茅泽育. 圆形断面管道非满流水动力特性[J]. 水科学进展, 2020, 31(4): 547-555. DOI: 10.14042/j.cnki.32.1309.2020.04.008
DING Falong, MAO Zeyu. Hydraulic characteristics of partially-filled flow in circular pipe[J]. Advances in Water Science, 2020, 31(4): 547-555. DOI: 10.14042/j.cnki.32.1309.2020.04.008
Citation: DING Falong, MAO Zeyu. Hydraulic characteristics of partially-filled flow in circular pipe[J]. Advances in Water Science, 2020, 31(4): 547-555. DOI: 10.14042/j.cnki.32.1309.2020.04.008

圆形断面管道非满流水动力特性

Hydraulic characteristics of partially-filled flow in circular pipe

  • 摘要: 为探究边壁双曲率对其水动力特性的影响,应用RNG k-ε紊流模型和部分面积体积障碍模拟技术(FAVOR),针对圆管非满流建立三维数值模型,通过物理模型试验结果验证该数值模型的可行性。针对底坡和充满度不同组合条件进行数值试验,分析断面流速、壁面切应力和雷诺切应力分布规律等。研究结果表明:圆管非满流断面上不同垂线的流速分布具有较好的相似性,据此提出了垂线流速分布的抛物线公式;针对不同充满度条件提出了壁面切应力沿湿周分布的统一表达式;雷诺切应力沿垂线服从线性分布规律,充满度越大且距中垂线越远,沿垂线的变化梯度越小;当充满度大于0.5时,由于受二次流影响断面中垂线上雷诺切应力出现负值。

     

    Abstract: Partially-filled open flow in circular-shaped pipe behaves unique hydrodynamic characteristics due to the special cross-section geometry. To investigate the peculiar characteristics caused by two-sides double-curvatures, a three-dimensional numerical model, based upon RNG k-ε turbulence model and FAVOR (Fractional Area/Volume Obstacle Representation) is established, and further verified using physical experiment results. The presented numerical model is then applied to simulate partially-filled flows with different combinations of slopes and filling degrees, in order to explore the velocity distribution, wall shear stress and Reynolds shear stress. The results indicate that velocity-distribution profiles along the different vertical lines generally follow a parabolic function, and a regression expression is proposed. A unified formula for the wall shear stress along wetted perimeter with different filling degrees is presented. The results also show that the Reynolds shear stresses linearly distribute along vertical lines. The larger the filling degree and distance from mid-perpendicular are, the smaller variation gradient of the stresses is. When filling degree is greater than 0.5, due to the influences of the secondary flow, the negative Reynolds shear stress appear along the mid-perpendicular.

     

/

返回文章
返回