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Fig. 1 Location and distribution of the monitoring sites for the lateral hyporheic zone at Maanxi Creek
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2.2 HHRERESK

(1) FHEPUBRALAL RS IIIE 60 ~80 cm WRFETIRMIEEN,, FE S 5N, ARKT)E,
FEfhad 50 B, 8 E I HE MR R4 AL

(2) BUZIEL T Multi3430 ZZB0K B (FEE WTW A &), [ Shic s sk fns i gy K
B . pH {H ., HL R (EC) MM (DO) WK, HAaHR45124 0.1 C, 0.001, 1 wS/cm #10.01 mg/L,
AT B E A 5 min, FEAXESERRT, XEHSE TAHE, EC B 1412 pS/em ARt AL HE, pH AR pH
{Eh 4. 01 F1 7 BYPAFNGE s WA i, DO FAR B R ZE A, [RIT, SERZ5 A4 EC. pH fH, DO 8
SKANRER ISR, BRI ZETE 5% LAY, i FH B8R 170 & (BB 1) Merck 22w ) 30 371 7 00 2 1] 7K R 45 SO0
JEABIKAY HCOS, KEFEH 0. 1 mmol/L, fifi ] DR2800 I #5287 e Y BT ( SE 1 Hach 23 7] ) BLIZ I 22 i 7K
AL FE AR ) NH-N, K§FEN 0. 01 mg/L, {XE HFRM 0. 01 mg/L,

(3) PHESF  FHIEUELFAY 60 mL =5 % B R M iR A2 I /K B 25 W /KR, R A DU BH 25, KA
% 1:1HNO;, ML= pH fH<2 5% E THIA, 4 CIRAA R, sKFERY B2 4 B2 ff /] 1ICP-OES Optima
2100DV ( 2 [ PerkinElmer 23 7)) SEAGN , W25<2%

(4) FAET  FIVEVELFE) 350 mL B SRR K S 4 M K BE, T RIBA B, KBRS T
R, 4 CLAFZEARM, KRR AY B B 1 e B T DR2800 U A 485 2843 6 Y6 BE 1T 58 AR, NO; . Cl RS H
0.1 mg/L, LK H RS54 0.3 mg/L, 0.1 mg/L; SO AEEHR 1 mg/L, (LKA 2 mg/L,

FRAE DA DA 2 5 T R A SR SRR Y A TR A 55 ( STe ) R = Uk 73 p(CO,) .

WIS TR A, T HEAIFSE 2524 1000 m ARPE R K20 CR1000 S 52 3 (b it Kkl BHEA RA 7)) A
SR P, HAEEE N 0. 1 mm, SREURIBRBEE N 24 h,

F 2015 4F 10 A 13 HEE WM I RELFE, N T A TEIK S 0 40 T 0 1) 28 Bl HER T2 R E, ik
PO A KA RN B, T20154E10 H15H, 1017, 11 A48, 1 ASH, 24 13HK&12
H 20 HIEZF 5 IR SRR ST —UOKAL . KT . pH E . EC. DO M1 BB F /K RERAE . HIEHFFEIX
FRAE RS ERAE , RIS TEEF204r, LL10 A 15 B, 10 A 17 B, 11 A4 B, 11 A5 HfL%E
AUER, 12 A 13 B, 12 H 20 HAEMK, & WSR2 LL 10 A 15 H7KKN S5,

3 R

3.1 ZEWHKMTHK

IR S A S T L TR S AIUUR R AR S5 i A K MBI Y A 52 K A
PN, BAE TR R A2 AN s BT )
R (B 1), TeREKRK, WIRERIZ DI
LA ’ Tk ; iﬁ“%( MAX1—MAX3) DU hyporheic zone of Maanxi Creek
FE(FE 1), WARABMRK B A B A S B v
e, BUB 2 BRI UL TS, 3T R R X TR R e s ol <00l TR
%iﬁ*iﬂiz FEOIRBE RZEEAL, 7 LRFZMET v 28.61 18.97 52.42 it

T, WKABBERNE, AR A HERICAERRAE maxe 30,04 17.96 51.10 Bt

T IR RN [ R A B AR AR F A Maxs 28,901 19.97 51.12 Bt
X |V“{|)'|Iﬁ)ﬂ|§”§5zrﬁ$ FUR (] 2), WASH A K MAX4 6486 15.97 19.17 b+
A AT F B

] 3 Ry Eh BR A RAE UKL B e (C1 ) ZRARIR DL . BT 3 RIE Y, TRI7KOK 7 76 L 3K BEAE R A8 4h BN
FERETRSZIA T, SCEH7 RO T AR AR fb 3 K, 2R K, T K /K 7 Be i, (ECRABETT 10 H NI JEREN,
A& H AT B R ARG, FEOK KR o FERTIEW], WK A RO/ NMIEREAR, 32—

x1 DEREXHHUANHTROVMER %

Table 1 Mechanical composition of sediment in the




ne,

296 kOB 428 %

FREIRENE , Mo R KRG BT, S AT AR K St RKANA BIREME T, RTS8 5 S H
IKALEGS P/ IR T [, S ELAT 5 K 8] R 2K LR BE 4R/

BEE A IRALIRBE SR K R T K B ABOIRDE , [RIRFE CLT Ak g Bk g™, ok sl Rk A
NAEHEAE CI I EHRIE . BEAKIRBE , WK AR, S8 84 CUb, [AEZAR G i Rk

AN A i) 3=l A ya[ B R B fih . —e— E/KWI10A 15H/1017H)
ANE TR AT, ZEFEA R 30 em PN, B R TAT A RS AG B :*ﬂﬁ%ﬂgllﬁzlﬂ/llﬂsﬁ)

- —

m, Cr A i ks s AR (K 3) . =~ HiKII(12113H/12)1 20 1o
£
31 {-10 &
304 &
L 2
251 L X
: 1=88
< 204 750
) -
B 15§ 0 40
& £
10} < 30
sl S 20
‘ ‘ ‘ ‘ © L1 1 [ | | 1
P 1 | N O o Al 0 30 60 9 120 150
jniiuniuninsiusususiiusiuniinniiunfus uniinninniiun: WK MAX2 MAX4
E22g8IIT3I2FaTsE MAXI  MAX3
EEEEFEFEEEEEEEEE EEFIFEIE {om
i i) K3 EERRE A RAE KUK c(C1) 721k
&2 W ] R R R Fig. 3 Variations of water level and concentration of ¢( Cl™) of

Fig. 2 Precipitation in the observed period the observed sites at Maanxi Creek

3.2 XEFMEET

SEHARAZ LRI, SCHARHAKIR AR A BRI R, FERTR 10 em AN A IR
NFERE (L 4) o BEARGACIREIR , Rl R 58 oA i B AN - AR H/0A17H)

, R NN ” L - PEB(IHAHALASH)
%, FKABEEE, SR A ™ eEs HOKHI1207 13 H /121 20 H)

ST BCRYIEAEHIBESS A DO RBEREE . p(CO) TG, 2 2 ;t; 1 3
HUKSDIRIE, (o e ip s ™, e < 5F oz
W DO p(CO,) 53 B AN T F R, e H5 | L
W ASEHS pH (HJ% Sle (HEEF AT, 75 Mol B AR L | i<
B 4) . WK DO %, BERKIIFEDE, COHZHT 00000 02
TR BTG K, WS A s sh A p(CO,) GBI pH = 60000
{H. Sle f/IMIEH B E AT (12 4) = 30000
3.3 ZEHAUFETWL 0 78

[ 5 H T BRAS Rk A K AL Piper [, AIHIZEH A =
WK A2 KA, B HCO,-Ca - Mg 4 3, 5 HCO, - 69 =
S0,-Ca BUTAAT— 5 251, BEAGKINEIR , 2C Ak o o
TR 2B W R KBS K, MAX2 . MAX3 3% Wi 2% t;_q 0
4 HCO,-Ca 7 0

01 30 160 90 120 150

K1 6 9 TR 4 R RE A T B TR (ke B, IR K e ! MAX4
W7 A BRI ER B I T AR Ca® . Mg™ . HCO, %53 BB / em
FAEAC A Pk B R (T 6) . BEAS KR EDR, 58 H Bl 4 THRHRAS BB
N Sle (HEFIKIITHE (K 4), [z HAH A Ca™ | Mg™ | Fig.4 Environmental change in the hyporheic

HCO; W FERR R [, Ca® . Mg™ . HCO; %W (i i BiAL &

zone of Maanxi Creek



$24 WPE, 5 KRR T AT K -4 K ) 52 B R A 2 S A 297

BB (F 6), Ca™, Mg™ W ERIRRAL, dfdiZ N
SEH AU A e Y Na™ 980, BRI 2 PR B i 14
Na' 7EBETAI R 10 em DA S 7% M BRAR(1E1 6) . EC 276
FWes2 oAy B E ARG, KA s ca®
Mg HCO; ZARML (I 6) . W4, AT PRI e b
FRAZ (R 1), TR ER s By N K
W FETEA ] I A4 BETRT K A B TR AR (151 6) .

K PR 2275 Y 5 RTS8 AT FR AR e Y
IRFEZ DO e, WfLfEHSRELSY, WK AB RS,
NH;-N 7EAS ] 30 24 4 R 55 4k o NOS, S8 HL A DO
TERG K 1 B s BT R, B0 MAX2, MAX3 SO 7y

80 60 40 20 20 40 60 80

NHG-N R TR R (B 7) o BERDK AR, ZLHAFH G Na+K HCO), cl
DO i 0 Wy T HE T A R85 T S A R O Rk

IR A FIEOEAT ) | i NO; | SO {E58 HAE Y e s

SRR (I 7) , 7EFAK, NOTZEREI A2 30 om 4bfE LIk S
(TR R (P 7). BEASK Bk, 20 B4 1 5 ThHARAREE UKL Piper 6

A AE FH R S RAYAE FH sk 55 , A H AN NO;EEE?@% 10 em Fig. 5 Piper plot ofthe hyporheic zone of Maanxi Creek
LASMERS T FK I AT Th R, SO AT (181 7) o Al WS B BRBE RO, ml R M O 75 Ge gy i)
ik ik

—e— FI/KIA0A15H/10/17H) = —— FKMI(1015H/10J117H)
A APEHIUT4H/1ASH) _ . E A gERAUT4H/TISH)
K2 13H/125120H) 0 & g i L ——HUkI12A 13A/124201)
P 150 = 3f A ¢ =~
: 135 & z —
- g = -0 10 4
H H ———— —_ —
n 228 00 4 .z 4 g
40 3 —.4 T 12 =
~3 R Jdo =
g 90} AR TG R S
i ﬁ . E 75+ ~ \ <
g = 60 ; % o
£ i 45k I —
£ 2 A i ;p
= = ~~N— L £
=4 T L= i =
£ Toop S
< 206 ;0 A <
. npad——
£ = : 5
1050 7 £ o | //////tosg
172 < i 02 g
322 2 = . — — lo1 =
o . 1.0r , 10 g
T e T T :1: Ok ﬁ | I L fl ]
= 0 30 60 90 120 150 = 0. 30 60 90 120 150
WK MAX2 ¢ MAX4 E 7K MAX2 MAXA4
MAXI MAX3 MAXI  MAX3
PRI L / em BT S / em
K6 IhERs Rt s FEE T2 L K7 RS RAE T R B L
Fig. 6 Variational trend of major ions of the Fig. 7 Variational trend of pollutant of the

hyporheic zone of Maanxi Creek hyporheic zone of Maanxi Creek



298 KB B 285

S H AT REE B AR AL 4 i A RS e bt — e Y R S L BRI R Y, AERK A B
R, REESERE TR e BE S, MR A AR gk & AR A R A BERTK I RR, S H A N
DO, pH {HEFAKWIFE, Al Fe, Mn 300 b S bW A JF PRV Ao 55, [ Ao tho 389 58 17 4t
AALPXT Zn BOMZRREFE Y AR A Zn WRBE R E KIS TRAR (I 7) o 4, AT KA ER
SEHH MM T K pH ER#i TR, AU S MER I S, A8 H AN A R KRR (7).
3.4 XEHMBREFHMENZEHEEEINETR

FET K 55 3 N KA AR A R b, RS Wl A o8 A8 A S L A SR AR IR 0N TR 5 DX i) 38
TR AET K AS BB IE B N IR R — DR I KCE L (1 4) , X KCRTHE R 7K A8 38 BATE FH s e
355 . ARHESE HL AT KRB LA BB SR A 0 34 D R o i SRkt 5 B P AR AR SRR B R A8 R MR, w2
FIKTAE B FE R, EFKI, WK A B Jrdeam, 38 Hs 7K A e A BLZE BT B2 50 em 4R (& 3), [
AP PEAC EA TR BRI 30 em ZE A R EAL I8 IR M VA AR A0, 4 Fe RIS (B 7)), Fen FEK IS HAF By
A FREF 30~50 em Ak,

Bt K B R0K , AR B AR AR A% Bl 2 BT B2 30 em BREIE (8] 3) 5 FEAR C1TAGHE R /K RN A B SR (52 )
FEFETT A2 30 em PN, PRI REE S A3, CL RS 7 B Wik (1 3) , el ZEBET /2 30 em DA, b
AR K AEAE — 8 B R 25, 2 TRK 5 R KA B AR TR X R, F87R 1 28 Bt By Al K 3 i 57 1 BT
30 cm AN U

4 & e

(1) FfRTKEIEDR, S8R M w38 B KA 55 & AR B R AR AL, IR 28 B 32 K A B RE R
T AR N A7 MR K AMNA YGRS R

(2) BRI Ed TR0 i) 28 1A KA AR A X 28 T A IR AR Sh A7 AR — E SR, K E ARk B A B
KT B FAR A A2 T R 0% 3055, pH (E L TF, DO Th, AT NI JEE HV8ES ;  ) 1) 32 AR PR3 A0
Aot Ho AL T K R T K O BE S 77 2R 0, A2 H A BC TR HASALIR I FRAR , Z2 BT NOS . SO 2 (4L fiE
FIREAK, [RIAX Mn | Zn 555 4w [5 2 B8 13458

(3) EhE RN [ 22 F s MU BR A 25 RRAE 9 A8 f X6 58 1A 5 BBl AR s A — e F8 /n fE . B ad KA 4 Fe,
Cl SEFE AR B AR f nT R, B AT K IO Bk, 0 ) 38 Bty 31 g0 o)l 12 7 10 B 80y, R A2 30~ 50 em
s 2R 30 em AP,
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Influence of water level change on the geochemical dynamics of the lateral
hyporheic zone between river water and groundwater *
YANG Pingheng'*, ZHANG Yu'?, WANG Jianli"*, XIE Shiyou'’

(1. Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences ,
Southwest University, Chongging 400715, China; 2. Field Scientific Observation & Research Base of Karst Eco-environments
at Nanchuan in Chongqing, Ministry of Land and Resources of China, Chongqing 408435, China)

Abstract; Water level of the hyporheic zone essentially varies in different hydrological periods. In order to investigate
the geochemical characteristics of the lateral hyporheic zone in different hydrological periods, Maanxi Creek in
Chongqing was selected to be the study site. The water level, temperature, dissolved oxygen, pH, specific conduct-
ance, and selected ions concentrations of the river water, lateral hyporheic zone, and groundwater were monitored
during the transitional period of wet season to dry season ( October to December). Results show that the water level of
the lateral hyporheic zone was changed greatly with the arriving of dry season. The water level gradient decreased be-
tween river and hyporheic zone, resulting in a reduction of infiltration from the river water. Because of change of water
level and temperature drop of infiltrated water, the microbial activities in the lateral hyporheic zone declined, which
increases pH and decreases dissolved oxygen. These changes also reduced the specific conductance and weakened the
purification capacity of the lateral hyporheic zone to nitrate and sulfate, and enhanced the fixation capacity to the
heavy metals, like manganese and zinc. Based on the analysis of the geochemical dynamics of the hyporheic zone, it
can be deduced that the boundary of the hyporheic zone was shifted from a place of 30—50 ¢m in the wet season to a

place of less than 30 cm away from the riverbank in the dry season.

Key words: lateral hyporheic zone; water level change; geochemistry; Maanxi Creek; river water; groundwater
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